Open Access
Issue
MATEC Web Conf.
Volume 105, 2017
International Workshop on Transportation and Supply Chain Engineering (IWTSCE’16)
Article Number 00011
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/201710500011
Published online 14 April 2017
  1. M. Essaid, “Modélisation et simulation de la connectivité des flux logistiques dans les réseaux manufacturiers,” p. 207, (2013) [Google Scholar]
  2. N. V. K. Jasti and R. Kodali, Int. J. Prod. Res., no. August, pp. 1–19, (2014) [Google Scholar]
  3. A. Kaddoussi, “Optimisation des flux logistiques: vers une gestion avancée de la situation de crise,” Trait. du Signal, (2012) [Google Scholar]
  4. D. Anane, S. Pinson, and S. Aknine, “Les Approches Agents Pour La Coordination D’Activités Dans Les Chaînes Logistiques,” Cah. Du Lamsade, (2009) [Google Scholar]
  5. T. Vadvári and P. Várlaki, “Identification of Supply Chains Based on Input-Output Data,” Period. Polytech. Transp. Eng., vol. 43, no. 3, pp. 162–167, (2015). DOI: 10.3311/PPtr.7931. [CrossRef] [Google Scholar]
  6. X. Zhang, “Analysis for Scale-Free Network Characteristics of Logistics Distribution Network,” J. Serv. Sci. Manag., vol. 7, no. 3, pp. 189–195, (2014).DIO: 10.3311/PPtr.7931 [Google Scholar]
  7. F. Demoly, X. T. Yan, B. Eynard, S. Gomes and D. Kiritsis, “Integrated product relationships management: a model to enable concurrent product design and assembly sequence planning”, J.Eng.Des. , Vol. 23, no 7, pp. 544–561, (2012). DIO:10.1080/09544828.2011.629317 [CrossRef] [Google Scholar]
  8. Y. Chu, F. You, J. M. Wassick, and A. Agarwal, “Simulation-based optimization framework for multi-echelon inventory systems under uncertainty,” Comput. Chem. Eng., vol. 73, no. 2015, pp. 1–16, (2015). DIO: 10.1016/j.compchemeng.2014.10.008 [CrossRef] [Google Scholar]
  9. P. Jain, D. Dahiya, “An Architecture of a Multi Agent Enterprise Knowledge Management System Based on Service Oriented Architecture”, IJCSI, Vol. 9, Issue 2, No 3,(2012). [Google Scholar]
  10. H. Nfaoui, Y. Ozrout, “SCM, AUML : un modèle d’agents pour la simulation proactive et l’aide à la décision dans le Supply Chain”, Conférence Majestic, MAnifestation des JEunes Chercheurs en Sciences et Technologies de l’Information et de la Communication. 22–24, Lorient France, (2006) [Google Scholar]
  11. J. Costas, B. Ponte, D. de la Fuente, R. Pino, J. Puche, Applying Goldratt’s theory of constraints to reduce the bullwhip effect through agent-based modeling, Exp. Syst. Appl. 42 (2015) 2049–2060. [CrossRef] [Google Scholar]
  12. V. Kumar, S. Srinivasan, “A Review of Supply Chain Management using Multi-Agent System”, IJCSI, Vol. 7, Issue 5, (2010). [Google Scholar]
  13. W.E. Walsh, M.P. Wellman, “Modeling Supply Chain formation in multiagent systems”, In: Agent Mediated Electronic Commerce (IJCAI Workshop), 94–101, (1999). [Google Scholar]
  14. Y. Chen, Y. Peng, T. Finin, Y. Labrou, S. Cost, B. Chu, J. Yao, R. Sun and B Wilhelm, “A negotiation based multi agent system for Supply Chain”, In: Working Notes of the Agents ’99 Workshop on Agents for Electronic Commerce and Managing the Internet-Enabled Supply Chain, Seattle, WA, April (1999). [Google Scholar]
  15. M. A. Kammoun, Conception d’un système d’information pour l’aide au déplacement multimodal : Une approche multi-agents pour la recherche et la composition des itinéraires en ligne. Lille: Ecole Centrale de Lille, (2007). [Google Scholar]
  16. Y. Chu, F. You, J. M. Wassick, and A. Agarwal, “Simulation-based optimization framework for multi-echelon inventory systems under uncertainty,” Comput. Chem. Eng., vol. 73, no. 2015, pp. 1–16, (2015), DIO: 10.1016/j.compchemeng.2014.10.008 [CrossRef] [Google Scholar]
  17. M. Sghaier, Combinaison des techniques d’optimisation et de l’intelligence artificielle distribuée pour la mise en place d’un système de covoiturage dynamique. Ecole Centrale de Lille, (2011). [Google Scholar]
  18. A. Mortazavi, A. Arshadi Khamseh, and P. Azimi, “Designing of an intelligent self-adaptive model for supply chain ordering management system,” Eng. Appl. Artif. Intell., vol. 37, no. March, pp. 207–220, (2015). DIO:10.1016/i.engappai.2014.09.004 [CrossRef] [Google Scholar]
  19. W. Wang, W. Fu, H. Zhang, and Y. Wang, “Hybrid modeling and simulation of automotive supply chain network,” vol. 6, no. 9, pp. 1598–1605, (2013). ISSN: 20407459 [Google Scholar]
  20. M.Shaiq, R. Shaikh and A.Ahmed, Conflict Resolutions in Supply Chain Collaboration a Perspective of Supply Chain Managers, Journal of Business Strategies, Vol. 9, No.1, pp. 17–30, (2015) [Google Scholar]
  21. A. Seco and C. Vieira, “A multi-agent supply chain simulation analysis through a statistical mixed model,” Procedia Technol., vol. 16, pp. 163–171, (2014). DIO:10.1016/i.protcy.2014.10.079. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.