Open Access
Issue |
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
|
|
---|---|---|
Article Number | 05016 | |
Number of page(s) | 8 | |
Section | Sustainable Environmental Sciences and Technology | |
DOI | https://doi.org/10.1051/matecconf/201710305016 | |
Published online | 05 April 2017 |
- C. Karthikeyan, S. Rajeswari, S. Maruthamuthu, K. Subramanian, and G. Rajagopal, Biogenic ammonia for CO2 apturing and electrochemical conversion into bicarbonate and formate, J. CO2 Util., 6, 53–61, (2014) [Google Scholar]
- C. Le Quere, M. R. Raupach, J. G. Canadell and G. Marl, Trends in the sources and sinks of carbon dioxide. Nature Geosciences 2-12, 831–836, (2009) [Google Scholar]
- H. Siikavirta, R. Zevenhoven and J. Kohlmann, CO2 capture, storage and utilisation in Finland, TechnolClim.,(2002) [Google Scholar]
- I.G. Kim, B.H. Jo, D.G. Kang, C.S. Kim, Y.S. Choi and H.J. Cha, Biomineralizationbased conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase, Chemosphere., 87(10), 1091–1096, (2012) [Google Scholar]
- J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried and R.D. Srivastava, J. Int, Greenhouse Gas Control 2, 9–20, (2008) [Google Scholar]
- K.M.K. Yu, I. Curcic, J. Gabriel and S.C.E. Tsang, Recent advances in CO2 capture and utilization, ChemSus Chem., 1(11), 893–899 (2008) [Google Scholar]
- C.K. Ahn, H.W. Lee, Y.S Chang, K. Han, J.Y. Kim, C.H. Rhee, H.D. Chun, M.W. Lee and J.M. Park, Int. J. Greenhouse Gas Control, 5, 1606–1613 (2011) [Google Scholar]
- S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, New York, (2001) [Google Scholar]
- M.J. Aguilar, Urine as a CO2 absorbent, J. Hazard Mater, 213–214, 502–4, (2012) [CrossRef] [Google Scholar]
- C. Karthikeyan, S. Rajeswari, S. Maruthamuthu, K. Subramanian and G. Rajagopal, Biogenic ammonia for CO2 capturing and electrochemical conversion into bicarbonate and formate, J. CO2 Util., 6, 53–61, (2014) [Google Scholar]
- AM. Neville, JJ. Brooks, Concrete technology, Longman Group UK Ltd, (1993) [Google Scholar]
- AM. Neville, Properties of concrete, Fourth Edition, Longman Group UKLtd, (1995) [Google Scholar]
- S. Bang, J.K. Galinat and V. Ramakrishnan, Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii, Enzyme and microbial technology, 28(4), 404–409, (2001) [CrossRef] [PubMed] [Google Scholar]
- A. F. Alshalif, J.M. Irwan, N. Othman and L.H. Anneza, Isolation of Sulphate Reduction Bacteria (SRB) to Improve Compress Strength and Water Penetration of Bio-Concrete, In MATEC Web of Conferences, 47, EDP Sciences, (2016) [CrossRef] [EDP Sciences] [Google Scholar]
- J.M. Irwan, L.H. Anneza, N. Othman and A. Faisal. Alshalif, Compressive Strength and Water Penetration of Concrete with Enterococcus faecalis and Calcium Lactate, In Key Engineering Materials, 705, 345–349, Trans Tech Publications, (2016) [CrossRef] [Google Scholar]
- J.M. Irwan, L.H. Anneza, N. Othman, A.F. Alshalif, M.M. Zamer and T. Teddy, Calcium Lactate addition in Bioconcrete: Effect on Compressive strength and Water penetration, In MATEC Web of Conferences, 78, 01027, EDP Sciences, (2016) [Google Scholar]
- K. Van Tittelboom, N. De Belie, W. De Muynck and W. Verstraete, Use of bacteria to repair cracks in concrete, Cement and Concrete Research., 40(1), 157–166, (2010) [Google Scholar]
- G.M. Bond, N. Liu, A. Abel, B.J. McPherson and J. Stringer, Biomimetic Sequestration of CO2 in Carbonate Form: Role of Produced Waters and Other Brines, Prepr, Pap-Am. Chem. Soc, Div. Fuel Chem, 49(1), 420, (2004) [Google Scholar]
- W.D. Gunter, E.H. Perkins and T.J. McCann, Aquifer disposal of CO2 rich gases: reaction design for added capacity, Energy Conversion and Management, 34, 941–948, (1993) [CrossRef] [Google Scholar]
- E.E. Berry, R.T. Hemmings, M.H. Zhang, B.J. Cornelius and D.M. Golden, Hydration in high-volume fly ash concrete binders. Materials J., 91(4), 382–389, (1994) [Google Scholar]
- R.D. Hooton, Influence of silica fume replacement of cement on physical properties and resistance to sulfate attack, freezing and thawing, and alkali-silica reactivity, materials J., 90(2), 143–151, (1993) [Google Scholar]
- W. Tangchirapat, T. Saeting, C. Jaturapitakkul, K. Kiattikomol and A. Siripanichgorn, Use of waste ash from palm oil industry in concrete, Waste Management, 27(1), 81–88, (2007) [CrossRef] [Google Scholar]
- C.J. Kibert, Sustainable construction: green building design and delivery, John Wiley & Sons, (2016) [Google Scholar]
- F.M. Lea, Some Special Cements and Cement Properties, The Chemistry of Cement and Concrete, Chemical Publishing Company, NY, USA, 544–547, (1971) [Google Scholar]
- B. Johannesson and P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cem, Concr, Res 31, 925–93, (2001) [CrossRef] [Google Scholar]
- C. Pade, M. Guimaraes, The CO2 uptake of concrete in a 100 year perspective. Cement and Concrete Research, 37, 1348–1356, (2007) [CrossRef] [Google Scholar]
- I.S. Yoon, O. Çopuroǧlu and K.B. Park, Effect of global climatic change on carbonation progress of concrete, Atmos, Environ, 41(34), 7274–7285, (2007) [Google Scholar]
- C. Chang and J. Chen, The experimental investigation of concrete carbonation depth, 36, 1760–1767, (2004) [Google Scholar]
- C.D. Atis, Carbonation-porosity-strength model for fly ash concrete, Journal of Materials in Civil Engineering, 16(1), 91–94, (2004) [CrossRef] [Google Scholar]
- N.K. Dhami, A. Mukherjee, S.M. Reddy and J. Seto, Biofilm and microbial applications in biomineralized concrete, Intech open access publisher, (2012) [Google Scholar]
- J.M. Irwan, A. F. Alshalif, N. Othman and A.L. Hll, Effect of ureolytic bacteria on compressive strength and water permeability on bio-concrete. International Conference on Civil, Architectural, Structural and Constructional Engineering, August 21-23, (2015) [Google Scholar]
- G.M. Bond, N. Liu, B.J. McPherson, A. Abel and J. Stringer, Laboratory scale pilot of enzyme catalyzed CO2 sequestration with produced waters as cation source, netl proceedings paper (2004), Retrieved on September 2, 2016 from www.netl.doe.gov/publications/proceedings/04/carbonseq/175.pdf, [Google Scholar]
- N. Favre, M.L. Christ, A.C. Pierre, Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate, J. of Molecular Catalysis B: Enzymatic, 60, 163–170, (2009) [Google Scholar]
- W. Li, W.S. Chen, P.P. Zhou and L.J. Yu, Influence of enzyme concentration on biosequestration of CO2 in carbonate form using bacterial carbonic anhydrase, Chem. Eng. J, 232, 149–156, (Oct, 2013) [CrossRef] [Google Scholar]
- R. Ramanan, K. Kannan, S.D. Sivanesan, S. Mudliar, S. Kaur, A.K. Tripathi and T. Chakrabarti, Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacterfreundii, World J. Microbiol, Biotechnol., 25(6), 981–987, (2009) [Google Scholar]
- A.Y. Shekh, K. Krishnamurthi, S.N. Mudliar, R.R. Yadav, A.B. Fulke, S.S. Devi and T. Chakrabarti, Recent Advancements in Carbonic Anhydrase–Driven Processes for CO2 Sequestration, Minireview, Crit. Rev, Environ, Sci, Technol., 42(14), 1419–1440, (2012) [Google Scholar]
- V. Achal, A. Mukherjee, P.C. Basu and M.S. Reddy, Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii, J. of industrial microbiology & biotechnology, 36(3), 433–438, (2009) [Google Scholar]
- F. Pacheco-Torgal and J.A. Labrincha, Biotech cementitious materials: Some aspects of an innovative approach for concrete with enhanced durability, Construction and Building Materials, 40, 1136–114, (2013) [Google Scholar]
- F. Nosouhian, D. Mostofinejad and H. Hasheminejad, Influence of bio-deposition treatment on concrete durability in a sulphate environment, Biosystems Engineering, 133, 141–152, (2015) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.