Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 01018
Number of page(s) 10
Section Sustainable and Advanced Construction Materials
DOI https://doi.org/10.1051/matecconf/201710301018
Published online 05 April 2017
  1. K.J. Mun, W.K. Hyoung, C.W. Lee, S.Y. So, and Y.S. Soh, Basic properties of nonsintering cement using phosphor gypsum and waste lime as activator, J. of Constr. Build. Mater., 21(6), 1342–1350 (2007) [CrossRef] [Google Scholar]
  2. E. Aprianti, P. Shafigh, S. Bahri, and J. Nodeh, Supplementary cementitious materials origin from agricultural wastes – A review, Constr. Build. Mater., 74, 176–187 (2015) [CrossRef] [Google Scholar]
  3. T. Vaisanen, A. Haapala, R. Lappalainen and L. Tomppo, Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review, Waste Management, 54, 62–73 (2016) [CrossRef] [Google Scholar]
  4. P. Shafigh, H. Mahmud, M.Z. Jumaat and M. Zargar, Agricultural wastes as aggregate in concrete mixtures – A review, Constr. Build. Mater., 53, 110–117 (2014) [CrossRef] [Google Scholar]
  5. S. Raut, R. Ralegaonkar, and S. Mandavgane, Development of sustainable construction material using industrial and agricultural solid waste: A review of wastecreate bricks, Constr. Build. Mater., 25(10), 4037–4042 (2011) [CrossRef] [Google Scholar]
  6. B. Wang, F. Dong, M. Chen, J. Zhu, J. Tan, X. Fu, Y. Wang and S. Chen, Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism, Procedia Environmental Sciences, 31, 12–17 (2016) [CrossRef] [Google Scholar]
  7. B.H.A. Bakar, P.J. Ramadhansyah and M.J.M. Azmi, Effects of rice husk ash fineness on the chemical and physical properties of concrete, Magazine of Concrete Research, 63(5), 313–320 (2011) [CrossRef] [Google Scholar]
  8. E. Rafiee, S. Shahebrahimi, M. Feyzi and M. Shaterzadeh, Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material), International Nano Letters; Springer Open J., 2(29) (2012) [Google Scholar]
  9. R.S. Bie, X.F Song, Q.Q. Liu, X.Y. Ji and P. Chen, Studies on effect of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement, J. of Cem. and Concr. Compos., 55, 162–168 (2014) [CrossRef] [Google Scholar]
  10. R. Jauberthie, F. Rendell, S. Tamba and I. Cisse, Origin of the pozzolanic effect of rice husks, Constr. Build. Mater., 14, 419–423 (2000) [CrossRef] [Google Scholar]
  11. R.S. Bie, X.F Song, Q.Q. Liu, X.Y. Ji and P. Chen, Studies on effect of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement, J. of Cem. and Concr. Compos., 55, 162–168 (2014) [CrossRef] [Google Scholar]
  12. S.K. Antiohos, V.G. Papadakis, and S. Tsimas, Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness, Cem. and Concr. Research, 61–62, 20-27 (2014) [Google Scholar]
  13. C. Hwang, L.A. Bui and C. Chen, Effect of rice husk ash on the strength and durability characteristics of concrete, Constr. Build. Mater., 25(9), 3768–3772 (2011) [CrossRef] [Google Scholar]
  14. S. Shahidan, I. Ismail, and N. Jamaluddin, A Review on Performance of Waste Materials in Self Compacting Concrete (SCC), J. of Technol. (Sciences & Engineering), 78(4), 29–35 (2016) [Google Scholar]
  15. V. Vishwakarma, D. Ramachandran, N. Anbarasan, and A.M. Rabel, Studies of rice husk ash nanoparticles on the mechanical and microstructural properties of the concrete, Materials Today: Proceedings, 3(6), 1999–2007 (2016) [CrossRef] [Google Scholar]
  16. R. Zerbino, G. Giaccio, and G. Isaia, Concrete incorporating rice-husk ash without processing, Constr. Build. Mater., 25(1), 371–378 (2011) [CrossRef] [Google Scholar]
  17. R. Kishore, V. Bhikshma and P. Jeevana Prakash, Study on strength characteristics of high strength rice husk ash concrete, Proc. Engineering, 14, 2666–2672 (2011) [CrossRef] [Google Scholar]
  18. N.V. Tuan, G. Ye, K.V. Breugel, A.L.A. Fraaij, and B.D. Dai, The study of using rice husk ash to produce ultra-high performance concrete, Constr. Build. Mater., 25(4), 2030–2035 (2011) [CrossRef] [Google Scholar]
  19. D. Chopra, R. Siddique and Strength Kunal, permeability and microstructure of selfcompacting concrete containing rice husk, Biosystems Eng. J., 130, 72–80 (2015) [CrossRef] [Google Scholar]
  20. S. Hesami, S. Ahmadi, and M. Nematzadeh, Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement, Constr. Build. Mater., 53, 680–691 (2014) [CrossRef] [Google Scholar]
  21. R.P. Jaya, M.R. Hainin, B.H. Abu Bakar, M.A. Megat Johari, M.H. Wan Ibrahim, and D.S. Jayanti, Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cycles, Advances in Cement Research, 26(3), 145–154 (2014) [CrossRef] [Google Scholar]
  22. J. Sutas, A. Mana and L. Pitak, Effect of rice husk and rice husk ash to properties of bricks, Proc. Engineering, 32, 1061–1067 (2012) [CrossRef] [Google Scholar]
  23. G. Cordeiro and C. Sales, Pozzolanic activity of elephant grass ash and its influence on the mechanical properties of concrete, Cem. and Concr. Compos., 55, 331–336 (2015) [CrossRef] [Google Scholar]
  24. V. Strezov, T.J. Evans and C. Hayman, Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal, Bioresour. Technol., 99, 8394–8399 (2008) [CrossRef] [Google Scholar]
  25. E.Y. Nakanishi, M. Frias, S.M. Ramirez, S.F. Santos, M.S. Rodrigues, O. Rodriguez, and H. Savastano Jr, Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes, Constr. Build. Mater., 73, 391–398 (2014) [CrossRef] [Google Scholar]
  26. M. Haameem J.A, M.S. Abdul Majid, M. Afendi, H.F.A. Marzuki, I. Fahmi, and A.G. Gibson, Mechanical properties of Napier grass fibre/polyester composites, J. of Composites Structures, 136, 1–10 (2016) [CrossRef] [Google Scholar]
  27. K. Ramanaiah, A.V. Ratna Prasad and K. Hema Chandra Reddy, Thermo physical properties of elephant grass fiber-reinforced polyester composites, Materials Letters, 89, 156–158 (2012) [CrossRef] [Google Scholar]
  28. M.J.M. Ridzuan, M.S. Abdul Majid, M. Afendi, S.N. Aqmariah Kanafiah, J.M. Zahri and A.G. Gibson, Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites, Mater. and Design, 89, 839–847 (2016) [CrossRef] [Google Scholar]
  29. E.Y. Nakanishi, M. Frias, S.F. Santos, M.S. Rodrigues, R.V. Villa, O. Rodriguez and H.S. Junior, Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements, J. of Cleaner Prod., 116, 236–243 (2016) [CrossRef] [Google Scholar]
  30. I. Merta and E.K. Tschegg, Fracture energy of natural fibre reinforced concrete, Constr. Build. Mater., 40, 991–997 (2013) [CrossRef] [Google Scholar]
  31. J.C.B. Moraes, J.L. Akasaki, J.L.P. Melges, J. Monzó, M.V. Borrachero, L. Soriano, J. Payá and M.M. Tashima, Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars, Constr. Build. Mater., 94, 670–677 (2015) [CrossRef] [Google Scholar]
  32. S.M.S. Kazmi, S. Abbas, M.A. Saleem, M.J. Munir and A. Khitab, Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes, Constr. Build. Mater., 120, 29–41 (2016) [CrossRef] [Google Scholar]
  33. N. Ali, N.A. Zainal, M.K. Burhanudin, A.A.A. Samad, N. Mohamad, S. Shahidan and S.R. Abdullah, Physical and Mechanical Properties of Compressed Earth Brick (CEB) Containing Sugarcane Bagasse Ash, EDP Sciences, 47 (2016) [Google Scholar]
  34. M.M. Tashima, J.C.B. Moraes, J.L.P. Melges, J. Monzo, M.V. Borrachero, L. Soriano and J. Paya, Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars, Constr. Build. Mater., 94, 670–677 (2015) [CrossRef] [Google Scholar]
  35. S. Rukzon and P. Chindaprasirt, Utilization of bagasse ash in high-strength concrete, J. of Mater. and Des., 34, 45–50 (2012) [CrossRef] [Google Scholar]
  36. A. Rerkpiboon, W. Tangchirapat and C. Jaturapitakkul, Strength, chloride resistance, and expansion of concretes containing ground bagasse ash, Constr. Build. Mater., 101, 983–989 (2015) [CrossRef] [Google Scholar]
  37. P.O. Modani and M.R. Vyawahare, Utilization of Bagasse Ash as a Partial Replacement of Fine Aggregate in Concrete, Procedia Engineering, 51(NUiCONE 2012), 25–29 (2013) [CrossRef] [Google Scholar]
  38. S. A. Lima, H. Varum, A. Sales, and V. F. Neto, Analysis of the mechanical properties of compressed earth block masonry using the sugarcane bagasse ash, Constr. Build. Mater., 35, 829–837 (2012) [CrossRef] [Google Scholar]
  39. R. Alavez-Ramirez, P. Montes-Garcia, J. Martinez-Reyes, D.C. Altamirano-Juarez, and Y. Gochi-Ponce, The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks, Constr. Build. Mater., 34, 296–305 (2012) [CrossRef] [Google Scholar]
  40. D. Mujah, Compressive strength and chloride resistance of grout containing ground palm oil fuel ash, J. of Cleaner Prod., 112, 712–722 (2016) [CrossRef] [Google Scholar]
  41. M.R. Hamidian, P. Shafigh, M.Z. Jumaat, U.J. Alengaram and N.H.R. Sulong, A new sustainable composite column using an agricultural solid waste as aggregate, J. of Cleaner Prod., 129, 282–291 (2016) [CrossRef] [Google Scholar]
  42. B. Alsubari, P. Shafigh and M. Z. Jumaat, Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete, J. of Cleaner Prod., 137, 982–996 (2016) [CrossRef] [Google Scholar]
  43. W. Tangchirapat, C. Jaturapitakkul and P. Chindaprasirt, Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete, Constr. Build. Mater., 23, 2641–2646 (2009) [CrossRef] [Google Scholar]
  44. K. Muthusamy, N. Zamri, M.A. Zubir, A. Kusbiantoro and S.W. Ahmad, Effect of mixing ingredient on compressive strength of oil palm shell lightweight aggregate concrete containing palm oil fuel ash, Procedia Engineering, 125, 804–810 (2015) [CrossRef] [Google Scholar]
  45. M.A.A. Aldahdooh, N.M. Bunnori and M.A.M. Johari, Development of green ultrahigh performance fiber reinforced concrete containing ultrafine palm oil fuel ash, Constr. Build. Mater., 48, 379–389 (2013) [CrossRef] [Google Scholar]
  46. S.K. Lim, C.S. Tan, O.Y. Lim and Y.L. Lee, Fresh and hardened properties oflightweight foamed concrete with palm oil fuel ash as filler, Constr. Build. Mater., 46, 39–47 (2013) [CrossRef] [Google Scholar]
  47. A.S. Muntohar and M.E. Rahman, Lightweight masonry block from oil palm kernel shell, Constr. Build. Mater., 54, 477–484 (2014) [CrossRef] [Google Scholar]
  48. R.P. Jaya, B.H. Abu Bakar, M.A. Megat Johari, M.H. Wan Ibrahim, Engineeringproperties of normal concrete Grade 40 containing rice husk ash at different grinding times, Int. J. of Technology, 1, 10‐19 (2011) [Google Scholar]
  49. L. Zhang, Production of bricks from waste materials – A review, Constr. Build. Mater., 47, 643–655 (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.