Issue |
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 10 | |
Section | Recycling for Sustainable Concrete | |
DOI | https://doi.org/10.1051/matecconf/201712003001 | |
Published online | 09 August 2017 |
Clay bricks prepared with sugarcane bagasse and rice husk ash – A sustainable solution
1 Associate Professor, Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan
2 Junior Lecturer, Department of Civil Engineering, Mirpur University of Science and Technology, Mirpur, AJK, Pakistan
3 Assistant Professor, Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan
* Corresponding author: msale005@fiu.edu
This study aims to characterize the clay bricks produced by the addition of the two agricultural waste materials i.e. sugarcane bagasse and rice husk ash. Disposing off these waste materials is a very challenging task and is a hazard to environment. The sugarcane bagasse and rice husk ash were collected locally from the cities of Peshawar and Wazirabad, respectively. These were mixed with the clay for brick manufacturing in three different proportions i.e. 5, 10 and 15% by weight of clay. Mechanical i.e. compressive strength and modulus of rupture and durability properties i.e. water absorption; freeze-thaw and sulphate resistance of these bricks were evaluated. Test results indicated that the sulphate attack resistance and efflorescence of clay bricks incorporating sugarcane bagasse and rice husk ash have been increased significantly. However, no significant effect on mechanical properties was observed. Furthermore, the additions of wastes have reduced the unit weight of bricks which decrease the overall weight of the structure leading to economical construction. Therefore, it can be concluded that the addition of waste materials in brick manufacturing can minimize the environmental burden leading towards more economical and sustainable construction.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.