Open Access
Issue |
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
|
|
---|---|---|
Article Number | 08013 | |
Number of page(s) | 5 | |
Section | Robot Design and Control | |
DOI | https://doi.org/10.1051/matecconf/20179508013 | |
Published online | 09 February 2017 |
- L. Li, W. Huang, Y.H. Gu, Q. Tian, “Statistical Modeling of Complex Backgrounds for Foreground Object Detection” IEEE TRANSACTIONS ON IMAGE PROCESSING, 13, 1459–1472 (2004). [CrossRef] [Google Scholar]
- S. Denman, V. Chandran, S. Sridharan, “An adaptive optical flow technique for person tracking systems” Pattern Recogn, 28, 1232–1239 (2007). [CrossRef] [Google Scholar]
- W. H. Warren, D. J. Hannon, “Direction of self-motion is perceived from optical flow” Nature, 336, 162–163 (1988). [CrossRef] [Google Scholar]
- S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M. J. Black, R. Szeliski, “A Database and Evaluation Methodology for Optical Flow” INT J COMPUT VISION, 92, 1–31 (2007). [CrossRef] [Google Scholar]
- D. Decarlo, D. Metaxas, “The Integration of Optical Flow and Deformable Models with Applications to Human Face Shape and Motion Estimation” Conference on Computer Vision and Pattern Recognition (San Francisco, CA, USA, 1996). [Google Scholar]
- D. Honegger, L. Meier, P. Tanskanen, M. Pollefeys, “An Open Source and Open Hardware Embedded Metric Optical Flow CMOS Camera for Indoor and Outdoor Applications” IEEE International Conference on Robotics and Automation (Karlsruhe, Germany, 2013). [Google Scholar]
- K. Steinkraus, L. P. Kaelbling, “Optical Flow for Obstacle Detection in Mobile Robots” Artificial Intelligence Laboratory Mit (2001). [Google Scholar]
- Y. P. Tan, S. R. Kulkarni, P. J. Ramadge, “A New Method for Camera Motion Parameter Estimation” International Conference on Image Processing, 1, 406 (1995). [CrossRef] [Google Scholar]
- N. Johansson, F. Williamsson, “Human Machine Interface Visualization Enhancement of an ABB Quality Control System” Umea University Department of Computing Science (2009). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.