Open Access
Issue
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
Article Number 07010
Number of page(s) 7
Section Mechanical Design-Manufacture and Automation
DOI https://doi.org/10.1051/matecconf/20179507010
Published online 09 February 2017
  1. Cheng Q, Luo R, Gu P, et al. Load Induced Error Identification and Camber Curve Design of a Large-Span Crossbeam[J]. Advances in Mechanical Engineering, 2013, 5: 847194. [CrossRef] [Google Scholar]
  2. Mehrabi M G, O’Neal G, Min B K, et al. Improving machining accuracy in precision line boring[J]. Journal of Intelligent Manufacturing, 2002, 13(5): 379–389. [CrossRef] [Google Scholar]
  3. Bryan J. International status of thermal error research (1990)[J]. CIRP Annals Manufacturing Technology, 1990, 39(2): 645–656. [CrossRef] [Google Scholar]
  4. Mayr J, Jedrzejewski J, Uhlmann E, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2): 771–791. [CrossRef] [Google Scholar]
  5. Postlethwaite S R, Allen J P, Ford D G. The use of thermal imaging, temperature and distortion models for machine tool thermal error reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, 212(8): 671–679. [CrossRef] [Google Scholar]
  6. Ni J. CNC machine accuracy enhancement through real-time error compensation[J]. Journal of manufacturing science and engineering, 1997, 119(4B): 717–7 [CrossRef] [Google Scholar]
  7. Yang S, Yuan J, Ni J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527–537. [CrossRef] [Google Scholar]
  8. Kim H S, Jeong K S. Design and manufacture of a three-axis ultra-precision CNC grinding machine[J]. Journal of Materials Processing Technology, 1997, 71(2): 258–266. [CrossRef] [Google Scholar]
  9. Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review: Part II: thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257–1284. [CrossRef] [Google Scholar]
  10. Mayr J, Jedrzejewski J, Uhlmann E, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2): 771–791. [CrossRef] [Google Scholar]
  11. Zhao HT, et al. Selection method of temperature critical point based on thermal error sensitivity chart. Journal of Shanghai Jiaotong University, 2015,49(005): 725–729. [Google Scholar]
  12. Wang XL, et al. Thermal error modeling of machine tool spindle based on PSO clustering and ELM neural network [J]. Combination machine tools and automatic processing technology, 2015 (7): 69–73. [Google Scholar]
  13. Luo FJ,Song DL, et al.Optimization of the Temperature Measuring PointsBased on LSR. Modular Machine Tool &Automatic Manufacturing Technique, 2015, 03(3):56–58. [Google Scholar]
  14. Ma Y. Sensor placement optimization for thermal error compensation on machine tools[M]. University of Michigan., 2001. [Google Scholar]
  15. Lee J H, Yang S H. Statistical optimization and assessment of a thermal error model for CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2002, 42(1): 147–155. [CrossRef] [Google Scholar]
  16. Creighton E, Honegger A, Tulsian A, et al. Analysis of thermal errors in a high-speed micro-milling spindle[J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 386–393. [CrossRef] [Google Scholar]
  17. Han J, Wang L, Cheng N, et al. Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimal-resource allocating networks[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(5–8): 463–472. [CrossRef] [Google Scholar]
  18. Cheng Q, Qi Z, Zhang G, et al. Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2015: 1–12. [Google Scholar]
  19. Zhao C, Gao F, Wang F. Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis− Principal Component Analysis (KICA− PCA)[J]. Industrial & engineering chemistry research, 2009, 48(20): 9163–9174. [CrossRef] [Google Scholar]
  20. Zhao C H Wang F L Lu N Y et al Stage-based Soft-transition Multiple PCA Modeling and on-line Monitoring Strategy for Batch Processes [J] Journal of Process Control 2007 17(9) : 728–741. [CrossRef] [Google Scholar]
  21. Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE transactions on circuits and systems-I : Fundamental theory and applications, 2000, 47(7): 1109–1114. [CrossRef] [Google Scholar]
  22. Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyper-parameters[J]. Neurocomputing, 2003, 51: 41–59. [CrossRef] [Google Scholar]
  23. Miao E M, Niu P C, Fei Y T, et al. Selecting temperature-sensitive points and modeling thermal errors of machine tools[J]. Journal of the Chinese Society of Mechanical Engineers, 2011, 32(6): 559–565. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.