Open Access
MATEC Web Conf.
Volume 90, 2017
The 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
Article Number 01064
Number of page(s) 9
Published online 20 December 2016
  1. H. D. Rozman, K. R. Ahmadhilmi, and A. Abubakar, “Polyurethane (PU) - Oil palm empty fruit bunch (EFB) composites: The effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties”, Polym. Test., vol. 23, no. 5, pp. 559–565, 2004. [CrossRef] [Google Scholar]
  2. M. Talimi, “Characterization of natural fibre reinforced biodegradable composites,” 2011. [Google Scholar]
  3. H. Nasution, S. Pandia, M. S. Maulida, and Sinaga, “Impact Strength and Thermal Degradation of Waste Polypropylene (wPP)/Oil Palm Empty Fruit Bunch (OPEFB) Composites: Effect of Maleic Anhydride -g-polypropylene (MAPP) Addition”, Procedia Chem., vol. 16, pp. 432–437, 2015. [CrossRef] [Google Scholar]
  4. R. Roslan, S. Zakaria, C. H. Chia, R. Boehm, and M. P. Laborie, “Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres”, Ind. Crops Prod., vol. 62, pp. 119–124, 2014. [CrossRef] [Google Scholar]
  5. M. Jawaid, H. P. S. Abdul Khalil, and A. Abu Bakar, “Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites”, Mater. Sci. Eng. A, vol. 527, no. 29–30, pp. 7944–7949, 2010. [CrossRef] [Google Scholar]
  6. M. Khalid, C. T. Ratnam, T. G. Chuah, S. Ali, and T. S. Y. Choong, “Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose”, Mater. Des., vol. 29, no. 1, pp. 173–178, 2008. [CrossRef] [Google Scholar]
  7. H. D. Rozman, G. S. Tay, R. N. Kumar, A. Abusamah, H. Ismail, and Z. a M. Ishak, “Polypropylene ± oil palm empty fruit bunch ± glass ® bre hybrid composites : a preliminary study on the flexural and tensile properties”, Eur. Polym. J., vol. 37, no. 6, pp. 1283–1291, 2001. [CrossRef] [Google Scholar]
  8. M. F. Awalludin, O. Sulaiman, R. Hashim, and W. N. A. W. Nadhari, “An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction”, Renew. Sustain. Energy Rev., vol. 50, pp. 1469–1484, 2015. [CrossRef] [Google Scholar]
  9. F. Sulaiman, N. Abdullah, H. Gerhauser, and A. Shariff, “An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources”, Biomass and Bioenergy, vol. 35, no. 9, pp. 3775–3786, 2011. [Google Scholar]
  10. S. Yusoff, “Renewable energy from palm oil - Innovation on effective utilization of waste”, J. Clean. Prod., vol. 14, no. 1, pp. 87–93, 2006. [CrossRef] [Google Scholar]
  11. S. H. Shuit, K. T. Tan, K. T. Lee, and A. H. Kamaruddin, “Oil palm biomass as a sustainable energy source: A Malaysian case study”, Energy, vol. 34, no. 9, pp. 1225–1235, 2009. [CrossRef] [Google Scholar]
  12. S. Prasertsan and P. Prasertsan, “Biomass residues from palm oil mills in Thailand: An overview on quantity and potential usage”, Biomass and Bioenergy, vol. 11, no. 5, pp. 387–395, 1996. [CrossRef] [Google Scholar]
  13. L. Torre and J. M. Kenny, “Impact testing and simulation of composite sandwich structures for civil transportation”, Compos. Struct., vol. 50, no. 3, pp. 257–267, 2000. [CrossRef] [Google Scholar]
  14. E. E. Hong, “Energy absorption of composite sandwich structures during low-velocity impact” 1999. [Google Scholar]
  15. H. Su, “Energy Absorption Capabilities of Composite Sandwich Panels under Blast Loads,” 2011. [Google Scholar]
  16. M. Akil Hazizan and W. J. Cantwell, “The low velocity impact response of foambased sandwich structures”, Compos. Part B Eng., vol. 33, no. 3, pp. 193–204, 2002. [CrossRef] [Google Scholar]
  17. S. Heimbs, S. Heller, and P. Middendorf, “Simulation of Low Velocity Impact on Composite Plates with Compressive Preload”, LS-DYNA Anwenderforum, pp. 11–24, 2008. [Google Scholar]
  18. S. N. a Safri, M. T. H. Sultan, N. Yidris, and F. Mustapha, “Low Velocity and High Velocity Impact Test on Composite Materials – A review”, Int. J. Eng. Sci., pp. 50–60, 2014. [Google Scholar]
  19. U. Farooq and P. Myler, “Ply level failure prediction of carbon fibre reinforced laminated composite panels subjected to low velocity drop-weight impact,“ Acta Astronaut., vol. 102, pp. 169–177, 2014. [CrossRef] [Google Scholar]
  20. D. During, L. Weib, D. Stefaniak, N. Jordan, and C. Huhne, “Low-velocity impact response of composite laminates with steel and elastomer protective layer”, Compos. Struct., vol. 134, pp. 18–26, 2015. [CrossRef] [Google Scholar]
  21. B. Yang, Z. Wang, L. Zhou, J. Zhang, and W. Liang, “Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact”, Compos. Struct., vol. 132, pp. 464–476, 2015. [CrossRef] [Google Scholar]
  22. M. Kathiresan and K. Manisekar, “Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading”, Compos. Struct., vol. 136, pp. 86–100, 2016. [CrossRef] [Google Scholar]
  23. H. Zarei, M. Fallah, G. Minak, H. Bisadi, and A. Daneshmehr, “Low velocity impact analysis of Fiber Metal Laminates ( FMLs ) in thermal environments with various boundary conditions,” Compos. Struct., 2016. [Google Scholar]
  24. V. Antonucci, F. Caputo, P. Ferraro, A. Langella, V. Lopresto, V. Pagliarulo, M. R. Ricciardi, A. Riccio, and C. Toscano, “Low velocity impact response of carbon fiber laminates fabricated by pulsed infusion: A review of damage investigation and semiempirical models validation,” Prog. Aerosp. Sci., vol. 81, pp. 26–40, 2016. [CrossRef] [Google Scholar]
  25. P. Malekzadeh and M. Dehbozorgi, “Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates”, Compos. Struct., vol. 140, pp. 728–748, 2016. [CrossRef] [Google Scholar]
  26. E. Panettieri, D. Fanteria, and F. Danzi, “A sensitivity study on cohesive elements parameters: Towards their effective use to predict delaminations in low-velocity impacts on composites,“ Compos. Struct., vol. 137, pp. 130–139, 2016. [CrossRef] [Google Scholar]
  27. D. Nardi, L. Lampani, M. Pasquali, and P. Gaudenzi, “Detection of low-velocity impact-induced delaminations in composite laminates using Auto-Regressive models,” Compos. Struct., 2016. [Google Scholar]
  28. L. Tan, M. Wang, X. Li, H. Li, J. Zhao, Y. Qu, Y. M. Choo, and S. K. Loh, “Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products”, Bioresour. Technol., vol. 200, pp. 572–578, 2016. [CrossRef] [Google Scholar]
  29. N. Zulkiple, M. Y. Maskat, and O. Hassan, “Pretreatment of Oil Palm Empty Fruit Fiber (OPEFB) with Aquaeous Ammonia for High Production of Sugar”, Procedia Chem., vol. 18, no. Mcls 2015, pp. 155–161, 2016. [CrossRef] [Google Scholar]
  30. S. X. Chin, C. H. Chia, S. Zakaria, Z. Fang, and S. Ahmad, “Ball milling pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB) fibres for the production of levulinic acid”, J. Taiwan Inst. Chem. Eng., vol. 52, pp. 85–92, 2015. [CrossRef] [Google Scholar]
  31. S. H. Chang, “An overview of empty fruit bunch from oil palm as feedstock for bio-oil production,“ Biomass and Bioenergy, vol. 62, pp. 174–181, 2014. [CrossRef] [Google Scholar]
  32. O. Hassan, T. P. Ling, M. Y. Maskat, R. M. Illias, K. Badri, J. Jahim, and N. M. Mahadi, “Optimization of pretreatments for the hydrolysis of oil palm empty fruit bunch fiber (EFBF) using enzyme mixtures”, Biomass and Bioenergy, vol. 56, no. 0, pp. 137–146, 2013. [CrossRef] [Google Scholar]
  33. Y. L. Chiew and K. Y. Cheong, “Growth of SiC nanowires using oil palm empty fruit bunch fibres infiltrated with tetraethyl orthosilicate”, Phys. E Low-Dimensional Syst. Nanostructures, vol. 44, no. 10, pp. 2041–2049, 2012. [CrossRef] [Google Scholar]
  34. M. H. Ahmad, M. F. Dolmat, N. Bashir, H. Ahmad, and a. a. a. Jamil, “Effects of Oil Palm Empty Fruit Bunch Filler on the Electrical Tree Propagation in Silicone Rubber”, APCBEE Procedia, vol. 3, no. May, pp. 147–153, 2012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.