Open Access
Issue
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 02019
Number of page(s) 7
Section Mechanical Engineering
DOI https://doi.org/10.1051/matecconf/20178702019
Published online 12 December 2016
  1. R.M. Heck, and R. J. Farrauto, Automobile Exhaust Catalyst. Applied Catalysis. A: General, 221, 443–457 (2001). [CrossRef] [Google Scholar]
  2. S. Darwin, U. Puji, R. Hamimah Abd. and H. Shahrin. Conceptual Design of Catalytic Converter. International Advanced Technology Congress 2005, Kuala lumpur, Malaysia (2005). [Google Scholar]
  3. J.M. Pardiwala, F. Patel and S. Patel. Review paper on Catalytic Converter for Automotive Exhaust Emission. International Conference On Current Trends In Technology, NUiCONE, 382–481 (2011). [Google Scholar]
  4. D. Pilone. Ferritic Stainless Steels for High Temperature Applications in Oxidizing Environments. Recent Patents on Materials Science, 2, 1, 27–31, ISSN 1874-4648, (2009). [CrossRef] [Google Scholar]
  5. T. Amano, Y. Takezawa, A. Shiino and T. Shishido. Surface Morphology of Scale on FeCrAl (Pd, Pt, Y) alloys. Journal of Alloys and Compounds, 452, 1, 16–22 (2008) [CrossRef] [Google Scholar]
  6. J.R. Nicholls and W.J. Quadakkers. Materials Issues Relevant to the Development of Future Metal Foil Automotive Cataltic Converters. In: Materials Aspects in Automotive Catalytic Converters, Hans Bode (Ed.), 31–48 (2002). [CrossRef] [Google Scholar]
  7. R.M. Heck, R.J. Farrauto and S.T. Gulati. Catalytic Air Pollution Control Commercial Technology, 3rd ed, John Wiley & Sons, New Jersey, ISBN 978 -0-470-27503-0 (2002). [Google Scholar]
  8. N.A. Badarulzaman, S. Purwadaria, A.A. Mohamad, & Z.A. Ahmad. The Production of Nickel–Alumina Composite Coating via Electroplating. Ionics, 15, pp. 603–607 (2009). [CrossRef] [Google Scholar]
  9. S. Zhao, J. Zhang, D. Weng, and X. Wu. A Method to Form Well-Adhered γ- Al2O3Layers on FeCrAl Metallic Supports. Surface and Coating Technology, 167, 1, 97–1052003 (2003). [CrossRef] [Google Scholar]
  10. L. Jia, M. Shen and J. Wang. Preparation and Characterization of Dip-Coated γ-Alumina Based Ceramic Materials on FeCrAl foils. Surface & Coatings Technology, 201, 16-17, 7159–7165 (2007). [Google Scholar]
  11. Z. Yanqing, X. Jieming, L. Cuiqing, X. Xin and L. Guohua. Influence of Preparation Method on Performance of a Metal Supported Perovskite Catalyst for Combustion of Methane. Journal of Rare Earths, 28, 1, 54–58 (2010). [CrossRef] [Google Scholar]
  12. I. Corni, M.P. Ryan, and A.R. Boccaccini. Electrophoretic deposition: From Traditional Ceramics to Nanotechnology. Journal of the European Ceramic Society, 28, 7, 1353–1367 (2008). [CrossRef] [Google Scholar]
  13. A. Specchia, A. Civera, and G. Saracco. In-Situ Combustion Synthesis of Perovskite Catalysts for Efficient and Clean Methane Premixed Metal Burner. Chemical Engineering Science, 59, 22-23, 5091–5098 (2004). [CrossRef] [Google Scholar]
  14. X. Wu, D. Weng, S. Zhao and W. Chen. Influence of An Aluminized Intermediate Layer on The Adhesion of a Gamma-AL2O3 Washcoaton FeCrAl. Surface & Coatings Technology, 190, 2–3, 434–439 (2005). [CrossRef] [Google Scholar]
  15. J.M. Zamaro, M.A. Ulla, and E.E. Miro. ZSM5 Growth on a FeCrAl Steel Support. Coating Characteristics Upon the Catalytic Behavior in The NOx SCR. Microporous and Mesoporous Materials, 115, 1–2, 113–122 (2008). [CrossRef] [Google Scholar]
  16. M.V. Sivaiah, S. Petit, M.F. Beaufort, D. Eyidi, J. Barrault, C. Batiot-Dupeyrat and S. Valange. Nickel Based Catalysts Derived from Hydrothermally Synthesized 1:1 and 2:1 Phyllosilicate as Precursors for Carbon Dioxide Reforming of Methane. Microporous and Mesoporous Materials, 140, 1–3, 69–80 (2010). [CrossRef] [Google Scholar]
  17. T.Y. Liu, Lay-Gaik Teoh, Chao-Kai Huang, Ying-Chieh Lee. A Study of Roughness Improvement of Al2O3 Substrates Using Sol-Gel method. Procedia Engineering 141, 108–114 (2016). [Google Scholar]
  18. L. Henke. An AFM determination of the effects on surface roughness caused by cleaning of fused silica and glass substrates in the process. Biosensors and Bioelectronics, 17, 547–555 (2002). [CrossRef] [Google Scholar]
  19. Y. Putrasari, P. Untoro, S. Hasan, Huda, and D. Sebayang. Modification of Surface Roughness and Area of FeCrAl Substrate for Catalytic Converter using Ultrasonic Treatment. Journal of Mechatronics, Electrical Power, and Vehicular Technology, 01, 2 (2010). [Google Scholar]
  20. A. Heesemann, E. Schmidtke, F. Faupel, A. Kolb-Telieps, and J. Klower. Aluminum And Silicon Diffusion In Fe-Cr-Al Alloys. Scripta Materialia, 40, 5, 517–522 (1999). [CrossRef] [Google Scholar]
  21. K. Messaoudi, A.M. Huntz and B. Lesage. Diffusion and growth mechanism of Al2O3 Fe-Cr-Al alloys scales on ferritic. Materials Science and Engineering, A247, 248–262 (1998). [CrossRef] [Google Scholar]
  22. E.P. Degarmo, J. Black and R.A. Kohser. Materials and Processes in Manufacturing 223, ISBN: 0-471-65653-4 (2003). [Google Scholar]
  23. L. Xiang, Y.L. Gong, Li, and Z.W. Wang. Influence of Hydrothermal Modification on the Properties of Ni/ Al2O3 Catalyst. Applied Surface Science, 239, 94–100 (2004). [CrossRef] [Google Scholar]
  24. E. Kis, R. Marinkovic-Neducin, G. Lomic, G. Boskovic, D.Z. Obadovic, J. Kiurski, and P. Putanov. Structural and textural properties of the NiO- Al2O3 catalyst. Journal of Polvhedron, 17, 1, 27–34 (1998). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.