Issue |
MATEC Web Conf.
Volume 78, 2016
2nd International Conference on Green Design and Manufacture 2016 (IConGDM 2016)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/matecconf/20167801009 | |
Published online | 07 October 2016 |
Oxidation Resistance Analysis Of Metallic (FeCrAl Foil) Catalytic Converter Developed By Ultrasonic Approach
Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, 86400 Johor, Malaysia
* Corresponding author: mutalib@uthm.edu.my
Mobile sources contribute about 44% of outdoor toxic emissions, approximately 50% of cancer risk and at around 74% of noncancer risk health problems. Catalytic converter is quite needed in removing the pollutant and in preventing a health problem. The main problem in the catalytic converter is low oxidation resistance when operated at high temperature. Therefore, this paper aimed to develop catalytic converter material in high-temperature operation at around 1100 °C using FeCrAl foils as a metallic catalytic converter which coated by γ-Al2O3. This research is conducted using 3 various techniques such as ultrasonic bath for 3, 4, and 5 hours, Nickel (Ni) electroplating for 30, 45 and 60 minutes and the combination of ultrasonic bath and electroplating technique. Oxidation resistance analysis was conducted using tube furnace under argon gas for 60 hours in 3 cycles. Mass changes analysis of treated samples is showed by degradation mass. Lowest mass change of by ultrasonic bath samples is 0.3 wt%, for a combination of ultrasonic and electroplating samples is 0.3 wt% shown by UT 3 hours as well as 0.6 shown by EP 30 min. Parabolic rate constant is obtained by the time calculation based on the mass change of treated and untreated samples. It shown that UB 3 h is lowest parabolic rate constant of 2.258 × 10-20 g2 cm-4s -1 and UB 5 h is 1.13 × 10-20 g2 cm-4s -1. Lowest mass gain and lowest parabolic rate constant are become an indicator that the samples and that technique are recommended to fabricate the catalytic converter.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.