Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00023
Number of page(s) 6
Published online 29 August 2016
  1. Brownjohn, J.M. and P.-Q. Xia, Dynamic assessment of curved cable-stayed bridge by model updating. Journal of Structural Engineering, (2000). 126(2): p. 252–260. [CrossRef] [Google Scholar]
  2. Živanović, S., A. Pavic, and P. Reynolds, Finite element modelling and updating of a lively footbridge: The complete process. Journal of Sound and Vibration, (2007). 301(1–2): p. 126–145. [CrossRef] [Google Scholar]
  3. Friswell, M. and J.E. Mottershead, Finite element model updating in structural dynamics. Vol. 38. (1995): Springer Science & Business Media. [CrossRef] [Google Scholar]
  4. Dascotte, E. The use of FE model updating and probabilistic analysis for dealing with uncertainty in structural dynamics simulation. in Japan Modal Analysis Conference, Sept. (2003). [Google Scholar]
  5. Schuëller, G.I., et al., Uncertainty Analysis of a Large-Scale Satellite Finite Element Model. Journal of Spacecraft and Rockets, (2009). 46(1): p. 191–202. [CrossRef] [Google Scholar]
  6. Mares, C., J. Mottershead, and M. Friswell, Stochastic model updating: part 1—theory and simulated example. Mechanical Systems and Signal Processing, (2006). 20(7): p. 1674–1695. [CrossRef] [Google Scholar]
  7. Mottershead, J., et al., Stochastic model updating: part 2—application to a set of physical structures. Mechanical Systems and Signal Processing, (2006). 20(8): p. 2171–2185. [CrossRef] [Google Scholar]
  8. Fang, S.-E., W.-X. Ren, and R. Perera, A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation. Mechanical Systems and Signal Processing, (2012). 33(0): p. 83–96. [CrossRef] [Google Scholar]
  9. Rui, Q., H. Ouyang, and H.Y. Wang, An efficient statistically equivalent reduced method on stochastic model updating. Applied Mathematical Modelling, (2013). 37(8): p. 6079–6096. [Google Scholar]
  10. Bao, N. and C. Wang, A Monte Carlo simulation based inverse propagation method for stochastic model updating. Mechanical Systems and Signal Processing, (2015). [Google Scholar]
  11. Khodaparast, H.H., J.E. Mottershead, and M.I. Friswell, Perturbation methods for the estimation of parameter variability in stochastic model updating. Mechanical Systems and Signal Processing, (2008). 22(8): p. 1751–1773. [CrossRef] [Google Scholar]
  12. Husain, N.A., H.H. Khodaparast, and H. Ouyang. Parameter selections for stochastic uncertainty in dynamic models of simple and complicated structures. in Proceedings of the 10th International Conference on Recent Advances in Structural Dynamics, University of Southampton, Southampton. (2010). [Google Scholar]
  13. Husain, N.A., et al.Application of the Perturbation Method With Parameter Weighting Matrix Assignments for Estimating Variability in a Set of Nominally Identical Welded Structures. in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. (2010). American Society of Mechanical Engineers. [Google Scholar]
  14. Govers, Y. and M. Link, Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data. Mechanical Systems and Signal Processing, (2010). 24(3): p. 696–706. [CrossRef] [Google Scholar]
  15. Chen, H.-P. and T.S. Maung, Regularised finite element model updating using measured incomplete modal data. Journal of Sound and Vibration, (2014). 333(21): p. 5566–5582. [Google Scholar]
  16. Mottershead, J.E., M. Link, and M.I. Friswell, The sensitivity method in finite element model updating: a tutorial. Mechanical Systems and Signal Processing, (2011). 25(7): p. 2275–2296. [Google Scholar]
  17. Sitton, G., MSC/NASTRAN basic dynamic analysis user’s guide. Macneal-Schwendler Co, (1997). [Google Scholar]
  18. Collins, J.D., et al., Statistical Identification of Structures. AIAA Journal, (1974). 12(2): p. 185–190. [CrossRef] [Google Scholar]
  19. Lin, R.M. and D.J. Ewins, Analytical model improvement using frequency response functions. Mechanical Systems and Signal Processing, (1994). 8(4): p. 437–458. [CrossRef] [Google Scholar]
  20. Modak, S.V., T.K. Kundra, and B.C. Nakra, Comparative study of model updating methods using simulated experimental data. Computers & Structures, (2002). 80(5–6): p. 437–447. [CrossRef] [Google Scholar]
  21. Modak, S.V., T.K. Kundra, and B.C. Nakra, Model updating using constrained optimization. Mechanics Research Communications, (2000). 27(5): p. 543–551. [CrossRef] [Google Scholar]
  22. Husain, N.A., et al., Finite-element modelling and updating of laser spot weld joints in a top-hat structure for dynamic analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, (2010). 224(4): p. 851–861. [Google Scholar]
  23. Moore, G.J., MSC/NASTRAN design sensitivity and optimization: user’s guide, version 68. (1994): MacNeal-Schwendler Corporation. [Google Scholar]
  24. Mares, C., M. Friswell, and J. Mottershead, Model updating using robust estimation. Mechanical Systems and Signal Processing, (2002). 16(1): p. 169–183. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.