Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06058
Number of page(s) 9
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. M. Rutkowska, L. Chmielarz, D. Macina, et al. Catalytic decomposition and reduction of N2O over micromesoporous materials containing Beta zeolite nanoparticles, Appl. Catal. B-Environ. 146(2013) 112–122. [CrossRef] [Google Scholar]
  2. V.V. Ordomskii, Y.V. Monakhova, E.E. Knyazeva, et al. The physicochemical properties of micro/mesoporous materials prepared by the recrystallization of zeolite BEA, Russ. J. Phys. Chem. A. 83(2009) 1012–1017. [CrossRef] [Google Scholar]
  3. L. Gigli, R. Arletti, S. Quartieri, et al. The high thermal stability of the synthetic zeolite K-L: Dehydration mechanism by in situ SR-XRPD experiments, Microporous Mesoporous Mat. 177(2013) 8–16. [CrossRef] [Google Scholar]
  4. H. Liu, K. Guo, X. Li, et al. Understanding and direct strategy to synthesize hydrothermally stable micro-mesoporous aluminosilicates with largely enhanced acidity, Microporous Mesoporous Mat. 188(2014) 108–117. [CrossRef] [Google Scholar]
  5. T. Li, A. Duan, Z. Zhen, et al. Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline, Fuel. 117(2014) 974–980. [CrossRef] [Google Scholar]
  6. D. Zhang, A. Duan, Z. Zhao, et al. Synthesis, characterization and catalytic performance of meso-microporous material Beta-SBA-15-supported NiMo catalysts for hydrodesulfurization of dibenzothiophene. Catal. Today. 175(2011) 477–484. [CrossRef] [Google Scholar]
  7. Q. Huo, Y. Gong, T. Dou, et al. Novel Micro- and Mesoporous Composite Molecular Sieve Assembled by Zeolite L Nanocrystal and Its Performance for the Hydrodesulfurization (HDS) of Fluidized Catalytic Cracking (FCC) Gasoline, Energy Fuels. 24(2010) 3764–3771. [Google Scholar]
  8. H. Liang, X. Guang, L.P. Liu, H.Y. Long, et al. Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene, Chin. J. Catal. 0(2014): 0–0. [Google Scholar]
  9. B. Saha, A. Khan, H. Ibrahim, et al. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas, Fuel. 120(2014) 202–217. [CrossRef] [Google Scholar]
  10. H. Quan, D. Tao, Z. Zhen, et al. Synthesis and application of a novel mesoporous zeolite L in the catalyst for the HDS of FCC gasoline, Appl. Catal. A-Gen. 381(2010) 101–108. [CrossRef] [Google Scholar]
  11. K.R. Kloetstra, H.W. Zandbergen, J.C. Jansen, et al. Overgrowth of mesoporous MCM- 41 on faujasite, Microporous Mesoporous Mat. 6(1996) 287–293. [CrossRef] [Google Scholar]
  12. R.Y. Zhao, J. Liu, Y. Liu, et al. Synthesis and Hydrodesulfurization Evaluation of the Meso-Micropore Composite Zeolite, Acta Petrol Sin: Pet Process Section. 26(2010) 657–665.(in Chinese) [Google Scholar]
  13. K.S. Triantafyllidis, A.A. Lappas, I.A. Vasaloss, et al. Gas- oil cracking activity of hydrothermally stable aluminosilicate mesostructures (MSU- S) assembled from zeolite seeds: Effect of the type of framework structure and porosity, Catal. Today. 112(2006) 33–36. [CrossRef] [Google Scholar]
  14. K.S. Triantafyllidis, E.F. Iliopoulou, E.V. Antonakou, et al. Hydrothermally stable mesoporous aluminosilicates (MSU- S) assembled from zeolite seeds as catalysts for biomass pyrolysis, Microporous Mesoporous Mat. 99(2007) 132–139. [Google Scholar]
  15. C.J. Vanoers, W.J.J. Stevens, E. Bruijn, et al. Formation of a combined micro and mesoporous material using zeolite Beta nanoparticles, Microporous Mesoporous Mat. 120(2009) 29–34. [CrossRef] [Google Scholar]
  16. Y. DI, Y. YU, Y.Y. SUN, et al. Synthesis,characterization,and catalytic properties of stable mesoporous aluminosilicates assembled from preformed zeolite L precursors, Microporous Mesoporous Mat. 62(2003) 221–228. [CrossRef] [Google Scholar]
  17. Y.Y. JI, C.Y. WANG, Y.C. ZOU, et al. Design and synthesis of microporous and micro/mesoporous silica materials with excellent adsorption properties via selfassembly of silica species with tetraethyl ammonium in acidic aqueous media, J. Phys. Chem. C. 112(2008) 19367–19371. [CrossRef] [Google Scholar]
  18. J.L. Zheng, Y. Zhang, D. WU, et al. Synthesis of hydrothermally stable mesoporous aluminosilicates with tubular morphology from MFI zeolitic precursors and sodium silicates, Acta Chim. Sinica. 62(2004) 1357–1361. (in Chinese) [Google Scholar]
  19. J.L. Zheng, S.R. Zhai, D. WU, et al. S + X - I + route to mesostructured materials from fau and beta zeolite precursors: A comparative study of their assembly behaviors in extremely acidic media, J. Solid State Chem. 178(2005) 1630–1636. [CrossRef] [Google Scholar]
  20. W.J. Kim, S.D. Kim. U.S. Patent 20060111234 A1. (2006) [Google Scholar]
  21. T. Ramanathan, S. Gurudeeban, K. Satyavani, et al. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad, J. Nanobiotechnol. 9(2011) 43–50. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.