Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 05025
Number of page(s) 7
Section Chapter 5 Metallurgical Engineering
DOI https://doi.org/10.1051/matecconf/20166705025
Published online 29 July 2016
  1. R.P. Guo, B.S. Sun, B.B. Gao. Low cost manufacturing technology of titanium alloy used in ordnance equipment. Ordnance Mater. Sci. Eng., 31 (2008): 83–86. (in Chinese)
  2. W. Gao, C.X. Zhang. Process of the low-cost titanium alloys and its military application. Titanium Industry Progress, 25 (2008): 6–10. (in Chinese)
  3. W.Y. Zhang. Research progress of high-performance and low cost titanium alloy. Aeronautical Manuf. Technol., 5 (2011): 74–76, 79. (in Chinese)
  4. Z.S. Zhu, G.Q. Shang, X.N. Wang, Y. Fei, J. Li. Research and development of low cost and high performance titanium alloys. Titanium Industry Progress, 29 (2012): 1–5. (in Chinese)
  5. F. Chen, L. Chen, B. Guo, Q. Peng, S.X. Guo, L.L. Mao. Advantages and disadvantages of electron beam cold hearth melting. Chin. J. Nonferrous Met., 20 (2010): s873–s876. (in Chinese) [CrossRef]
  6. L.L. Yu, X.N. Mao, Y.M. Zhang, Z.M. Hou, W.G. Lei, C. Wang, P. Gao. Development of electron-beam cold hearth single melt process for titanium alloy ingots. Titanium Industry Progress, 26 (2009): 14–18. (in Chinese)
  7. H.R. Harker. Experience with large scale electron beam cold hearth melting (EBCHM). Vacuum, 41 (1990): 2154–2156. [CrossRef]
  8. A. Mitchill. The electron beam melting and refining of titanium alloys. Mater. Sci. Eng., A, 263 (1999): 217–223. [CrossRef]
  9. A. Mitchill. Composition control in hearth melting processes, in G Lütjering, J Albrecht (Eds.), Ti-2003 Science and Technology, Proceedings of the 10th World Conference on Titanium, Volume I, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, pp. 189–196.
  10. A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R.V. Teliovich, S.L. Semiatin. Microstructure, texture, and mechanical properties of electron-beam melted Ti-6Al-4V. Mater. Sci. Eng., A, 346 (2003): 178–188. [CrossRef]
  11. H.V. Zhuk, P.A. Kobryn, S.L. Semiatin. Influence of heating and solidation conditions on the structure and surface quality of electron-beam melted Ti-6Al-4V ingots. J. Mater. Process. Technol., 190 (2007): 387–392. [CrossRef]
  12. J. S. Montgomery, G.H. Wells Martin. Titanium armor applications in combat vehicles. JOM, 53 (2001): 29–32. [CrossRef]
  13. J.R. Wood, J.C. Fanning. Direct production of Ti-6Al-4V alloy plate from electron beam cold hearth melted slab ingot, in G Lütjering, J Albrecht (Eds.), Ti-2003 Science and Technology, Proceedings of the 10th World Conference on Titanium, Volume I, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003, pp. 181–188.
  14. Q.Y. Feng, H. Pang, L. Qiao, X.W. Tong, R. Liu, W.J. Ye, D.C. Wang, Q. Gao. Preparation of low-cost TC4 titanium alloy plate. Chin. J. Nonferrous Met., 23(2013): s353–s357. (in Chinese) [CrossRef]
  15. X.W. Tong, S.X. Hui, L. Qiao, W.J. Ye, P.H. Zhang, H. Pang, R. Liu, Q.Y. Feng, Y. Yu, Y.N. Dong, J. Wang and X.Y. Song, China Patent, CN 104451213 A. (2015)
  16. Z. Zhang, W. Li, Q. Liao, P. Hou, H. Wu, X.D. Zhang. Effect of forging process on microstructure and mechanical properties of TC10 titanium alloy. Mechanical Engineering & Automation. 3 (2014): 108–109, 111. (in Chinese)

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.