Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 04002
Number of page(s) 6
Section Chapter 4 Surface Engineering and Coating Technology
DOI https://doi.org/10.1051/matecconf/20166704002
Published online 29 July 2016
  1. T.J. Huang, M.C. Huang, M.S. Huang, Novel methane steam-reforming catalyst of Ni-Bi2O3/GDC to reduce CO for hydrogen production, Applied Catalysis A: General. 354 (2009) 127–131. [CrossRef] [Google Scholar]
  2. J.R. Rostrup-Nielsen, Fuels and Energy for the Future: The Role of Catalysis, Catalysis Reviews. 46 (2004) 247–270. [CrossRef] [Google Scholar]
  3. F. Joseck, M. Wang, Y. Wu, Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills, Int. J. Hydrogen Energy. 33 (2008) 1445–1454. [CrossRef] [Google Scholar]
  4. M.L. Murray, E. H. Seymour, J. Rogut, S. W. Zechowska, Stakeholder perceptions towards the transition to a hydrogen economy in Poland, Int. J. Hydrogen Energy. 33 (2008) 20–27. [CrossRef] [Google Scholar]
  5. Z.B. Yang, W.Z. Ding, Y.Y. Zhang, X.G. Lu, Y.W. Zhang, P.J. Shen, Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst, Int. J. Hydrogen Energy. 35 (2010) 6239–6247. [CrossRef] [Google Scholar]
  6. P.J. Kirton, J. Ellis, P.T. Crisp, The analysis of organic matter in coke oven emissions, Fuel. 70 (1991) 1383–1389. [CrossRef] [Google Scholar]
  7. B. Jiang, H.W. Cheng, L.F. Luo, X.G. Lu, Z.F. Zhou, Oxygen Permeation and Stability of Ce0.8Gd0.2O2−δPrBaCo2−xFexO5+δ Dual–phase Composite Membranes, Journal of Materials Science & Technology. 30 (2014) 1174–1180. [CrossRef] [Google Scholar]
  8. H.W. Cheng, X.G. Lu, D.H Hu, Y.W. Zhang, W.Z. Ding, H.L. Zhao, Hydrogen production by catalytic partial oxidation of coke oven gas in BaCo0.7Fe0.2Nb0.1O3−δ membranes with surface modification, Int. J. Hydrogen Energy. 36 (2011) 528–538. [CrossRef] [Google Scholar]
  9. Z.P. Shao, G.X. Xiong, Y. Cong, W.S. Yang, Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8−xO3−δ ceramic membranes, J. Membr. Sci. 164 (2000) 167–176. [CrossRef] [Google Scholar]
  10. H.W. Cheng, W.L. Yao, X.G. Lu, Z.F. Zhou, C.H. Li, J.Z. Liu, Structural stability and oxygen permeability of BaCo0.7Fe0.2M0.1O3−δ (M=Ta, Nb, Zr) ceramic membranes for producing hydrogen from coke oven gas, Fuel Process. Technol. 131 (2015) 36–44. [CrossRef] [Google Scholar]
  11. H.W. Cheng, J.Z. Liu, X.G. Lu, W.Z. Ding, Enhancing the Oxygen Permeability of BaCo0.7Fe0.2Nb0.1O3−δ Membranes by Coating GdBaCo2-xFexO5+δ for Partial Oxidation of Coke Oven Gas to Syngas, ACS Applied Materials & Interfaces. 3 (2011) 4032–4039. [CrossRef] [Google Scholar]
  12. Y.W. Zhang, K. Su, F.L. Zeng, W.Z. Ding, X.G. Lu, A novel tubular oxygen-permeable membrane reactor for partial oxidation of CH4 in coke oven gas to syngas, Int. J. Hydrogen Energy. 38 (2013) 8783–8789. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.