Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02009
Number of page(s) 8
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. M. Guo, P. Diao, S. Cai, Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties, Appl. Surf. Sci. 249 (2005) 71–75. [CrossRef] [Google Scholar]
  2. W.J. Lee, A. Suzuki, K. Imeda, H. Okada, A. Wakahara, A. Yoshida, Fabrication and Characterization of Eosin-Y-Sensitized ZnO Solar Cell, Jpn. J. Appl. Phys. 143 (2004) 152–155. [CrossRef] [Google Scholar]
  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 (2001) 1897–1899. [CrossRef] [PubMed] [Google Scholar]
  4. B. Pal, M. Sharon, Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel processMater. Chem. Phys. 76 (2002) 82–87. [Google Scholar]
  5. X.D. Bai, E.G. Wang, P.X. Gao, Z.L. Wang, Measuring the work function at a nanobelt tip and at a nanoparticle surface, Nano Lett. 3 (2003) 1147–1150. [CrossRef] [Google Scholar]
  6. J. Johnson, H. Yan, P. Yang, R. Saykally, Optical cavity effects in ZnO nanowire Lasers and Waveguides, J. Phys. Chem. B 107 (2003) 8816–8828. [CrossRef] [Google Scholar]
  7. S. Sreekantan, L. R. Gee, Z. Lockman, Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide. J. Alloys Compd. 476(2009) 513−518. [CrossRef] [Google Scholar]
  8. L.T. Canham, Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046–1048. [CrossRef] [Google Scholar]
  9. O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72 (1998) 1173–1175. [CrossRef] [Google Scholar]
  10. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 (2001) 3331–3334. [CrossRef] [Google Scholar]
  11. J. M. Macak, H. Tsuchiya and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 44 (2005) 2100–2102. [CrossRef] [Google Scholar]
  12. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Self-organized porous WO3 formed in NaF electrolytes, Electrochem. Commun. 7 (2005) 295–298. [CrossRef] [Google Scholar]
  13. H. Tsuchiya, P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun. 7 (2005) 49–52. [CrossRef] [Google Scholar]
  14. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun. 7 (2005) 97–100. [CrossRef] [Google Scholar]
  15. S.J. Kim, J. Lee, J. Choi, Understanding of anodization of zinc in an electrolyte containing fluoride ions, J. Electrochim. Acta. 53(2008) 7941–7945. [CrossRef] [Google Scholar]
  16. S.J. Kim, J. Choi, Self-assembled arrays of ZnO stripes by anodization, Electrochem. Commun. 10 (2008) 175–179. [CrossRef] [Google Scholar]
  17. S.S. Chang, S.O. Yoon, H.J. Park, A. Sakai, Appl. Surf. Sci. Luminescence properties of anodically etched porous Zn, 158 (2000) 330–334. [Google Scholar]
  18. M. Izaki, Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique, J. Electrochem. Soc. 146(1999) 4517–4521. [CrossRef] [Google Scholar]
  19. C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Formation and field emission property of single-crystalline Zn microtip arrays by anodization, Electrochem. Commun. 9 (2007) 2093–2097. [CrossRef] [Google Scholar]
  20. C.A. Grimes, G.K. Mor, Fabrication of TiO2 nanotube arrays by electrochemical anodization: four synthesis generations, in: TiO2 Nanotube Arrays, Springer, 2009, pp. 1–66. [Google Scholar]
  21. C. Wang, J. Li, L. Xu, Reduction of CO2 aqueous solution by using photosensitized-TiO2 nanotube catalysts modified by supramolecular metalloporphyrins-ruthenium(II) polypyridyl complexes. J. Mol. Catal. A-Chem. 363 (2012) 108–114. [CrossRef] [Google Scholar]
  22. M. Reli, K. Kamila, M. Vlastimil, K. Pavel, O. Lucie, Effect of calcinations temperature and calcination time on the kaolinite/TiO2 composite forphotocatalytic reduction of CO2, GeoSci. Eng, 58 (2012) 10–22. [Google Scholar]
  23. K. Satoshi, K. Hidekazu, O. Kiyohisa, M. Takayuki, S. Akira, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, J. Photochem. Photobiol. A 109 (1997) 59–63. [CrossRef] [Google Scholar]
  24. C.J. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visiblelight photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts, J. Phys. Chem. Lett. 1 (2010) 48–53. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.