Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02008
Number of page(s) 4
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. X.D. Xu, S.B. Li, Y.C. Wang, et al, Silicon nanowires prepared by electron beam evaporation in ultrahigh vacuum, Nanoscale. Res. Lett. 243(2012)1–7. [Google Scholar]
  2. J.V. Wittemann, W. Münchgesang, S. Senzetc, Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition, J. Appl. Phys. 107(2010)096105. 1–3. [CrossRef] [Google Scholar]
  3. P Ball, Science at the atomic scale, J. Nature. 355(1992)761–767. [CrossRef] [Google Scholar]
  4. Ulyashin, A. Sytchkova, Hydrogen related phenomena at the ITO/a-Si:H/Si heterojunction solarcell interfaces, Phys. Status. Solidi. A. 210(2013)711–716. [CrossRef] [Google Scholar]
  5. G.O. Setti, M.B. Mamián-López, P. R. Pessoa, et al, Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering, Appl.Surf.Sci. 347(2015)17–22. [CrossRef] [Google Scholar]
  6. R. Savu, E. Joanni, Effect of processing conditions on the nucleation and growth of indium-tin-oxide nanowires made by pulsed laser ablation, J. Mater. Sci. 43(2008) 609–613. [CrossRef] [Google Scholar]
  7. W.C. Chang, C.H. Kuo, P. J. Lee, Y, et al, Synthesis of single crystal Sn-doped In2O3 nanowires:size-dependent conductive characteristics, Phys. Chem. Chem. Phys. 14(2012) 13041–13045. [CrossRef] [Google Scholar]
  8. B.S. Swain, S.S. Lee, S.H. Lee, et al, Transformation of silicon nanowires to nanocoils by annealing in reducing atmosphere, J. Cryst. Growth. 327(2011)276–280. [CrossRef] [Google Scholar]
  9. B.S. Swain, S.S. Lee, S.H. Lee, et al, Effect of H2 ambient annealing on silicon nanowires prepared by atmospheric pressure chemical vapor deposition, Chem. Phys. Lett. 494(2010)269–273. [CrossRef] [Google Scholar]
  10. R. Gago, L. Vázquez, R. Cuerno, et al, Production of ordered silicon nanocrystals by low-energy ion sputtering, Appl. Phys. Lett. 78(2001)3316–3318. [CrossRef] [Google Scholar]
  11. B. Ziberi, F. Frost, B. Rauschenbach, Formation of large-area nanostructures on Si and Ge surfaces during low energy ion beam erosion, J. Vac. Sci. Technol. A. 24(2006)1344–1348. [CrossRef] [Google Scholar]
  12. Kuboi, Degradation of ITO Film in Glow-Discharge Plasma, Jpn. J. Appl. Phys. 20(1981)783–786. [CrossRef] [Google Scholar]
  13. M. Jeon, K. Kamisako, Catalyst formation at various temperatures by hydrogen radical treatment and synthesis of silicon nanowires, Appl. Surf. Sci. 12. 254(2008)7703–7707. [CrossRef] [Google Scholar]
  14. R.A. Palmer, T.M. Doan, P.G. Lloyd, et al, Reduction of TiO2 with Hydrogen Plasma, Plasma. Chem. Plasma. P. 22(2002)335–350. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.