Open Access
Issue
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 05017
Number of page(s) 6
Section Water, Micropollution and Environmental Engineering
DOI https://doi.org/10.1051/matecconf/20164705017
Published online 01 April 2016
  1. D. Mukherjee, Development of A Novel TiO2-Polymeric Photocatalyst for Water Purification Both under UV and Solar Illuminations, PhD Thesis, The University of Western Ontario, Canada, (2011). [Google Scholar]
  2. N. Negishi, T. Iyoda, K. Hashimoto and A. Fujishima, Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic activity, Chem. Lett., 24(9), 841-842, (1995). [CrossRef] [Google Scholar]
  3. M.R. Hoffamnn, S.T. Martin, W. Choi and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95, 69-96, (1995). [CrossRef] [Google Scholar]
  4. K. Jatinder, dual effect of photocatalysis and adsorption in degradation of azorubine dye using nanosized TiO2 and activated carbon immobilized with different techniques. Int. J. of ChemTech Research, 3, 1537-1543, (2010). [Google Scholar]
  5. W. Zhao, Z. Bai, A. Ren, B. Guo and C. Wu, Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers, Appl. Surf. Sci., 256(11), 3493–3498, (2010). [CrossRef] [Google Scholar]
  6. V. Iliev, D. Tomova, R. Todorovska, D. Oliver, L. Petrov, D. Todorovsky and M. Uzunova-Bujnova, Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of oxalic acid in aqueous solution, Appl. Catal A: Gen., 313(2), 115–121, (2006). [CrossRef] [Google Scholar]
  7. J. Li, D. Shieh, D. Li, C. Ho, S. Yang and J. Lin, Photodegradation of CH3I on mesoporous TiO2-B nanofibers with Au nanoparticles, Appl. Surf. Sci., 254(15), 4655–4664, (2008). [CrossRef] [Google Scholar]
  8. M. Bowker and E. Fourre, Direct interactions between metal nanoparticles and support: STM studies of Pd on TiO2(1 1 0), Appl. Surf. Sci., 254(14), 4225–4229 (2008). [CrossRef] [Google Scholar]
  9. B.T. Su, X.H. Liu, X.X. Peng, T. Xiao and Z.X. Su, Functional Nanostructures: Processing, Characterization and Applications, Spinger, New York, (2003). [Google Scholar]
  10. J.F. Zhu, F. Chen, J.L. Zhang, H.J. Chen and M. Anpo, Visible light responsive titania-based nanostructures for photocatalytic, photovoltaic and photoelectrochemical applications, J. Photochem. Photobiol. A: Chem., 180, 196–204, (2006). [Google Scholar]
  11. Y.Z. Wang and M.Q. Zhong, Photocatalytic activities of TiO2 modified by poly (fluorene-cobithiophene) under visible light, J. Applied Catalysis B: Environmental, 90, 249–254, (2009). [CrossRef] [Google Scholar]
  12. P.Lei, F. Wang, X. Gao, Y. Ding, S. Zhang, J. Zhao, S. Liu and M. Yang, Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants, J. of Hazardous Materials, 227–228, 185-194, (2012). [CrossRef] [Google Scholar]
  13. C.Y Kuo, C.H. Wu and H.Y. Lin, Photocatalytic degradation of bisphenol A in a visible light/TiO2 system, Desalination, 256(1-3), 37-42, (2010). [CrossRef] [Google Scholar]
  14. R. Ali and B.S Ooi, Photodegradation of New Methylene Blue in aqueous solution using zinc oxide and titanium dioxide as catalyst, J. of Technology, 45, 31-42, (2006). [Google Scholar]
  15. W.I.N. Wan Ismail, S.K. Ain, R. Zaharudin, A.H. Jawad, M.A.M. Ishak, K. Ismail and S. Sahid, New TiO2/DSAT immobilization system for photodegradation of anionic and cationic dyes, Int. J. of Photoenergy, 2015, 1-6, (2015). [CrossRef] [Google Scholar]
  16. S. Suzana, C. Lidija, D. Ljubas, V. Svetličić, I.F. Houra and N. Tomašić, Synthesis, characterization and photocatalytic properties of sol–gel TiO2 films, Ceramics Int., 37(4), 1153-1160, (2011). [CrossRef] [Google Scholar]
  17. S.J Bu, Z.G Jin, X.X Liu, L. Yang and Z. Cheng, Fabrication of TiO2 porous thin films using peg templates and chemistry of the process, Materials Chemistry and Physics, 88(2-3), 273-279, (2004). [CrossRef] [Google Scholar]
  18. A.A. Ramírez-Santos, P. Acevedo-Peña and E.M. Córdoba, Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol, Química Nova, 35(10), 1931-1935, (2012). [CrossRef] [Google Scholar]
  19. D. Mukherjee, S. Barghi and A.K. Ray. Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light, Processes, 2(1), 12-23, (2014). [CrossRef] [Google Scholar]
  20. J.M. Calderon-Moreno, S. Preda, L. Predoana, M. Zaharescu, M. Anastasescu, M. Nicolescu, M. Stoica, H. Stroescu, M. Gartner, O. Buiu, M. Mihaila and B. Serban, Effect of polyethylene glycol on porous transparent TiO2 films prepared by sol–gel method, Ceramics Int., 40(1), 2209-2220, (2014). [CrossRef] [Google Scholar]
  21. L.C. Chen, F.R. Tsai and C.M. Huang, Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3, J. Photochem. Photobiol. A: Chem., 170(1), 7–14 (2005). [CrossRef] [Google Scholar]
  22. N. Tasić , Z. Branković, Z. Marinković-Stanojević and G. Branković, Effect of binder molecular weight on morphology of TiO2 films prepared by tape casting and their photovoltaic performance, Science of Sintering, 44(3), 365-372, (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.