Open Access
Issue
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 05003
Number of page(s) 6
Section Water, Micropollution and Environmental Engineering
DOI https://doi.org/10.1051/matecconf/20164705003
Published online 01 April 2016
  1. N. Abdel-Raouf, A.A. Al-Homaidan and I.B.M. Ibraheem, Microalgae and wastewater treatment, Saudi J. Biol. Sci., 19( 3), 257-275, (2012). [Google Scholar]
  2. J. Shi, B. Podola and M. Melkonian, Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study, J. Appl. Phycol., 19(5), 417-423, (2007). [CrossRef] [Google Scholar]
  3. H.Azarpira, P. Behdarvand, K. Dhumal and G. Pondhe, Potential use of cyanobacteria species in phycoremediation of municipal wastewater, Int. J. of Biosciences, 4(4), 105-111, (2014). [Google Scholar]
  4. U. Emeka, G.I. Ndukwe, K.B. Mustapha and R.I. Ayo, Constraints to large scale algae biomass production and utilization, J. of Algal Biomass Utilization, 3(2), 14-32, (2012). [Google Scholar]
  5. F.M. Salih, Microalgae tolerance to high concentrations of carbon dioxide: A review, J. Environ. Prot., 2(5), 648–654, (2011). [CrossRef] [Google Scholar]
  6. P.H. Rao, R.R. Kumar, B. Raghavan, V. Subramanian and V. Sivasubramanian, Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility, Water SA, 37(1), 7-14, (2011). [Google Scholar]
  7. P. Gani, N.M. Sunar, A.A.A. Latiff, I.T.K. Joo, U.K. Parjo, Q. Emparan and C.M. Er, Phycoremediation of dairy wastewater by using green microlgae: Botryococcus sp., Appl. Mech. Mater., 773-774, 1318-1323, (2015). [CrossRef] [Google Scholar]
  8. J. Chotwattanasak and U. Puetpaiboon, Full scale anaerobic digester for treating palm oil mill wastewater, J. Sustain. Energy Environ., 2(3), 133–136, (2013). [Google Scholar]
  9. P.O. Souza, L.R. Ferreira, N.R.X. Pires, P.J.S. Filho, F.A. Duarte, C.M.P. Pereira and M.F. Mesko, Algae of economic importance that accumulate cadmium and lead: A review, Brazilian J. Pharmacogn., 22(4), 825–837, (2012). [Google Scholar]
  10. S. Chinnasamy, A. Bhatnagar, R.W. Hunt and K.C. Das, Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications, Bioresour. Technol., 101(9), 3097-3105, (2010). [CrossRef] [Google Scholar]
  11. P. Gani, N.M. Sunar, H. Matias-Peralta, A.A.A. Latiff, U. Kalthsom, A. Rafiq and A. Razak, Phycoremediation of wastewaters and potential hydrocarbon from microalgae: A review, Adv. Environ. Biol., 9(20), 1-8, (2015). [Google Scholar]
  12. S. Elumalai, S. Ramganesh and T. Sangeetha, Phycoremediation for leather industrial effluent - treatment and recycling using green microalgae and its consortia, Int. J. of Current Phycoremediation, 2(10), 1–9, (2014). [Google Scholar]
  13. P. Gani, N.M. Sunar, A.A.A Latiff, N.S. Kamaludin, U.K. Parjo, Q. Emparan and C.M. Er, Experimental study for phycoremediation of Botryococcus sp . on greywater, Appl. Mech. Mater., 773-774, 1312-1317, (2015). [CrossRef] [Google Scholar]
  14. M.A. Fulazzaky, Carbonaceous, nitrogenous and phosphorus matters removal from domestic wastewater by an activated sludge reactor of nitrification-denitrification type, J. Eng. Sci. Technol., 4(1), 69-80, (2009). [Google Scholar]
  15. H. Kamyab, M. Soltani, M. Ponraj, M.F. Din and E.V. Putri, A review on microalgae as potential lipid container with wastewater treating functions, J. of Environmental Treatment Techniques, 1(2), 76–80, (2013). [Google Scholar]
  16. A.L.A. Zinatizadeh, Biological treatment of palm oil mill effluent (Pome) using an up-flow anaerobic sludge fixed film (Uasff) bioreactor, PhD Thesis, Universiti Sains Malaysia, Penang, (2006). [Google Scholar]
  17. J.R. Votano, M. Parham, L.H. Hall, L.B. Kier and L.M. Hall, Microalgae: The green gold of the future?, Chem. Biodivers., 1(11), 1829–1841, (2004). [CrossRef] [Google Scholar]
  18. P. Metzger and C. Largeau, Botryococcus braunii: A rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66(5), 486–496, (2005). [CrossRef] [Google Scholar]
  19. Z. Yaakob, K.F. Kamarudin and R. Rajkumar, The Current Methods for the biomass production of the microalgae from wastewaters: An overview, World Applied Sciences J., 31(10), 1744-1758, (2014). [Google Scholar]
  20. APHA, AWWA, and WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, (2005). [Google Scholar]
  21. O. Bastidas, Cell counting with neubauer chamber (basic hemocytometer usage), Technical Note - Neubauer Chamber Cell Counting, Celeromics, (2014). [Google Scholar]
  22. R. Órpez, M.E. Martínez, G. Hodaifa, F. El-Yousfi, N. Jbari and S. Sánchez, Growth of the microalga botryococcus braunii in secondarily treated sewage, Desalination, 246(1), 625-630, (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.