Issue |
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 8 | |
Section | Water and Wastewater Treatment Process | |
DOI | https://doi.org/10.1051/matecconf/201710306007 | |
Published online | 05 April 2017 |
Green Approach in the Bio-removal of Heavy Metals from wastewaters
1 Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
2 Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
3 Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
* Corresponding author: parancgat@yahoo.com
Cultivation of microalgae has been suggested as a green approach for a sustainable wastewater treatment especially heavy metal bioremediation. This study investigated the bio-removal of zinc (Zn), iron (Fe), cadmium (Cd) and manganese (Mn) from domestic wastewater (DW) and food processing wastewater (FW) using green microalgae, Botryococcus sp.. The total of five treatments represented by five different cell concentrations (1×103, 1×104, 1×105, 1×106 and 1×107 cells/mL) of Botryococcus sp. in the wastewaters medium. The results revealed high removal efficiency of Zn, Fe, Cd and Mn after 18 days of the culture compared to control (wastewaters without algae). In DW , Zn, Fe, Cd and Mn were successfully removed at the highest efficiencies up to 71.5%, 51.2%, 83.5% and 97.2%, respectively while in FW, the same metal concentrations were reduced by up to 64.4%, 53.3%, 52.9% and 26.7%, respectively. Overall, most of the algae cell concentrations tested were successfully reducing the metals contaminant presence in both wastewaters and provides a baseline for further phycoremediation coupled with biomass production.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.