Open Access
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 01015
Number of page(s) 5
Section Cementitious, Concrete and Sustainable Materials
Published online 01 April 2016
  1. D. Law, A.A. Adam, T. Molyneaux, I. Patnaikuni and A. Wardhono, Long term durability properties of class F fly ash geopolymer concrete, Materials and Structures, 48, 721-731, (2015). [Google Scholar]
  2. A.A. Adam and Horianto, The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar, Procedia Engineering, 95, 410-414, (2014). [Google Scholar]
  3. A.M.M. Al Bakri, H. Kamarudin, M. BinHussain, I.K. Nizar, Y. Zarina and A.R. Rafiza, The effect of curing temperature on physical and chemical properties of geopolymers, Physics Procedia, 22, 286-291, (2011). [CrossRef] [Google Scholar]
  4. A.R. Brough, A. Katz, G.K. Sun, L.J. Struble, R.J. Kirkpatrick and J.F. Young, Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: formation of zeolites and al-substituted C-S-H, Cement and Concrete Research, 31, 1437-1447, (2001). [CrossRef] [Google Scholar]
  5. A.S. de Vargas, D.C.C. Dal Molin, A.C.F. Vilela, F.J. da Silva, B. Pavão and H. Veit, The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cement and Concrete Composites, 33, 653-660, (2011). [Google Scholar]
  6. G. Kovalchuk, A. Fernández-Jiménez and A. Palomo, Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development - part II, Fuel, 86, 315-322, (2007). [CrossRef] [Google Scholar]
  7. P.R. Vora and U.V. Dave, Parametric studies on compressive strength of geopolymer concrete, Procedia Engineering, 51, 210-219, (2013). [CrossRef] [Google Scholar]
  8. K. Dombrowski, A. Buchwald and M. Weil, The influence of calcium content on the structure and thermal performance of fly ash based geopolymers, J. of Materials Science, 42, 3033-3043, (2007). [CrossRef] [Google Scholar]
  9. F. Puertas, S. Martínez-Ramírez, S. Alonso and T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research, 30, 1625-1632, (2000). [Google Scholar]
  10. S. Puligilla and P. Mondal, Role of slag in microstructural development and hardening of fly ashslag geopolymer, Cement and Concrete Research, 43, 70-80, (2013). [Google Scholar]
  11. C.K. Yip, G.C. Lukey, J.L. Provis and J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 38, 554-564, (2008). [CrossRef] [Google Scholar]
  12. J. Temuujin, A. van Riessen and R. Williams., Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, J. of Hazardous Materials, 167, 82-88, (2009). [Google Scholar]
  13. H.M. Khater, Effect of calcium on geopolymerization of aluminosilicate wastes, Journal of Materials in Civil Engineering, 24, 92-101, (2012). [CrossRef] [Google Scholar]
  14. W.K.W. Lee and J.S.J. Van Deventer, The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements, Cement and Concrete Research, 32, 577-584, 2002. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.