Open Access
Issue
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 01003
Number of page(s) 7
Section Cementitious, Concrete and Sustainable Materials
DOI https://doi.org/10.1051/matecconf/20164701003
Published online 01 April 2016
  1. K.O.H. Okamura and K. Maekawa, High Performance Concrete, Gihoubou Pub. (in Japanese), (1993). [Google Scholar]
  2. H. Okamura, Self-compacting high-performance concrete, Concr. Int., 50–54, (1997). [Google Scholar]
  3. EFNARC, Specification and Guidelines for Self-Compacting Concrete, United Kingdom, (2002). [Google Scholar]
  4. H. Okamura and M. Ouchi, Self-Compacting Concrete, Adv. Concr. Technol., 1(1),. 5–15, (2003). [CrossRef] [Google Scholar]
  5. W. Zhu and P.J.M. Bartos, Permeation properties of self-compacting concrete Wenzhong, Cem. Concr. Res., 21(7), 921–925, (2003). [CrossRef] [Google Scholar]
  6. BS EN12350-Part 8, Testing Fresh Concrete, Self-Compacting Concrete, Slump Flow Test, (2010). [Google Scholar]
  7. BS EN12350-Part 9, Testing Fresh Concrete, Self-Compacting Concrete, V Funnel Test, (2010) [Google Scholar]
  8. BS EN12350- Part10, Testing Fresh Concrete, Self-Compacting Concrete, L Box Test, (2010). [Google Scholar]
  9. BS EN12350-Part 11, Testing Fresh Concrete, Self-Compacting Concrete, Sieve Segregation Test, (2010). [Google Scholar]
  10. BS EN12350-Part12, Testing Fresh Concrete, Self-Compacting Concrete, J Ring Test, (2010). [Google Scholar]
  11. K.E. Alyamaç and R. Ince, A preliminary concrete mix design for SCC with marble powders, Constr. Build. Mater., 23(3), 1201–1210, (2009). [CrossRef] [Google Scholar]
  12. R.N. Kraus, T.R. Naik, B.W. Ramme and R. Kumar, Use of foundry silica-dust in manufacturing economical self-consolidating concrete, Constr. Build. Mater., 23(11), 3439–3442, (2009). [CrossRef] [Google Scholar]
  13. N. Diamantonis, I. Marinos, M.S. Katsiotis, A. Sakellariou, A. Papathanasiou, V. Kaloidas and M. Katsioti, Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete, Constr. Build. Mater., 24(8), 1518–1522, (2010). [CrossRef] [Google Scholar]
  14. C. Selvamony, M.S. Ravikumar, S.U. Kannan and S.B. Gnanappa, Investigations on Self-Compacted Self-Curing Concrete Using Limestone Powder and Clinkers, ARPN J. Eng. Appl. Sci., 5(3), 1–6, (2010). [Google Scholar]
  15. S. Barbhuiya, Effects of fly ash and dolomite powder on the properties of self-compacting concrete, Constr. Build. Mater., 25(8), 3301–3305, (2011). [CrossRef] [Google Scholar]
  16. V. Corinaldesi and G. Moriconi, The role of industrial by-products in self-compacting concrete, Constr. Build. Mater., 25(8), 3181–3186, (2011). [CrossRef] [Google Scholar]
  17. M. Uysal and M. Sumer, Performance of self-compacting concrete containing different mineral admixtures, Constr. Build. Mater., 25(11), 4112–4120, (2011). [CrossRef] [Google Scholar]
  18. B. Benabed, E.H. Kadri, L. Azzouz and S. Kenai, Properties of self-compacting mortar made with various types of sand, Cem. Concr. Compos., 34(10), 1167–1173, (2012). [CrossRef] [Google Scholar]
  19. M. Gesoǧlu, E. Güneyisi, M.E. Kocabaǧ, V. Bayram and K. Mermerdaş, Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash, Constr. Build. Mater., 37, 160–170, (2012). [CrossRef] [Google Scholar]
  20. G. Azeredo and M. Diniz, Self-compacting concrete obtained by the use of kaolin wastes, Constr. Build. Mater., 38, 515–523, (2013). [CrossRef] [Google Scholar]
  21. Y.Y. Chen, B.L.A. Tuan and C.L. Hwang, Effect of paste amount on the properties of selfconsolidating concrete containing fly ash and slag, Constr. Build. Mater., 47, 340–346, (2013). [CrossRef] [Google Scholar]
  22. B. Herbudiman and A.M. Saptaji, Self-compacting concrete with recycled traditional roof tile powder, Procedia Eng., 54, 805–816, (2013). [CrossRef] [Google Scholar]
  23. M.K. Mohammed, A.R. Dawson and N.H. Thom, Production, microstructure and hydration of sustainable self-compacting concrete with different types of filler, Constr. Build. Mater., 49, 84–92, (2013). [CrossRef] [Google Scholar]
  24. K.C. Panda and P.K. Bal, Properties of self compacting concrete using recycled coarse aggregate, Procedia Eng., 51, 159–164, (2013). [CrossRef] [Google Scholar]
  25. G. Sua-iam and N. Makul, Use of Unprocessed Rice Husk Ash and Pulverized Fuel Ash in the Production of Self-compacting Concrete, IERI Procedia, 5, 298–303, (2013). [CrossRef] [Google Scholar]
  26. G. Sua-iam and N. Makul, Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete, J. Environ. Manage., 128, 931–940, (2013). [CrossRef] [Google Scholar]
  27. G. Sua-Iam and N. Makul, Use of recycled alumina as fine aggregate replacement in selfcompacting concrete, Constr. Build. Mater., 47, 701–710, (2013). [CrossRef] [Google Scholar]
  28. E.K. Anastasiou, I. Papayianni and M. Papachristoforou, Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement, Mater. Des., 59, 454–460, (2014). [CrossRef] [Google Scholar]
  29. H.Y. Aruntas, Workability and mechanical properties of self-compacting concretes containing LLFA , GBFS and MC, 73, 626–635, (2014). [Google Scholar]
  30. M.H.A. Beygi, M.T. Kazemi, I.M. Nikbin, J. Vaseghi Amiri, S. Rabbanifar and E. Rahmani, The influence of coarse aggregate size and volume on the fracture behavior and brittleness of selfcompacting concrete, Cem. Concr. Res., 66, 75–90, (2014). [CrossRef] [Google Scholar]
  31. I.E. Isik and M.H. Ozkul, Utilization of polysaccharides as viscosity modifying agent in selfcompacting concrete, Constr. Build. Mater., 72, 239–247, (2014). [CrossRef] [Google Scholar]
  32. J. Kanadasan and H.A. Razak, Mix design for self-compacting palm oil clinker concrete based on particle packing, Mater. Des., 56, 9–19, (2014). [CrossRef] [Google Scholar]
  33. A. Kanellopoulos, D. Nicolaides and M.F. Petrou, Mechanical and durability properties of concretes containing recycled lime powder and recycled aggregates, Constr. Build. Mater., 53, 253–259, (2014). [CrossRef] [Google Scholar]
  34. O.R. Khaleel and H. Abdul Razak, Mix design method for self compacting metakaolin concrete with different properties of coarse aggregate, Mater. Des., 53, 691–700, (2014). [CrossRef] [Google Scholar]
  35. M.E. Rahman, A.S. Muntohar, V. Pakrashi, B.H. Nagaratnam and D. Sujan, Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate, Mater. Des., 55, 410–415, (2014). [CrossRef] [Google Scholar]
  36. T. Uygunoǧlu, I.B. Topçu and A.G. Çelik, Use of waste marble and recycled aggregates in selfcompacting concrete for environmental sustainability, J. Clean. Prod., 84, (2014). [Google Scholar]
  37. N.E. Zainal Abidin, M.H. Wan Ibrahim, N. Jamaluddin, K. Kamaruddin and A. F. Hamzah, The Effect of bottom ash on fresh characteristic, compressive strength and water absorption of selfcompacting concrete, Appl. Mech. Mater., 660, 145–151, (2014). [CrossRef] [Google Scholar]
  38. D. Chopra, R. Siddique and Kunal, Strength, permeability and microstructure of self-compacting concrete containing rice husk ash, Biosyst. Eng., 130, 72–80, (2015). [CrossRef] [Google Scholar]
  39. H. Zhao, W. Sun, X. Wu and B. Gao, The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures, J. Clean. Prod., 95, 66–74, (2015). [CrossRef] [Google Scholar]
  40. S. Yang, X. Yue, X. Liu and Y. Tong, Properties of self-compacting lightweight concrete containing recycled plastic particles, Constr. Build. Mater., 84, 444–453, (2015). [CrossRef] [Google Scholar]
  41. H. Thanh, M. Müller, K. Siewert, and H. Ludwig, The mix design for self-compacting high performance concrete containing various mineral admixtures, J. Mater., 72, 51–62, (2015). [CrossRef] [Google Scholar]
  42. M. Tennich, A. Kallel and M. Ben Ouezdou, Incorporation of fillers from marble and tile wastes in the composition of self-compacting concretes, Constr. Build. Mater., 91, 65–70, (2015). [CrossRef] [Google Scholar]
  43. B. Safi, M. Saidi, A. Daoui, A. Bellal, A. Mechekak and K. Toumi, The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM), Constr. Build. Mater., 78, 430–438, (2015). [CrossRef] [Google Scholar]
  44. C. Shi, Z. Wu, K. Lv and L. Wu, A review on mixture design methods for self-compacting concrete, Constr. Build. Mater., 84, 387–398, (2015). [CrossRef] [Google Scholar]
  45. ERMCO, The European Guidelines for Self-Compacting Concrete, Eur. Guidel. Self Compact. Concr., (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.