Open Access
Issue
MATEC Web of Conferences
Volume 43, 2016
2016 4th International Conference on Nano and Materials Science (ICNMS 2016)
Article Number 02002
Number of page(s) 4
Section Nanomaterials and Nanomanufacturing
DOI https://doi.org/10.1051/matecconf/20164302002
Published online 19 February 2016
  1. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, et al., “CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications,” Progress in Materials Science, vol. 60, pp. 208–337, 2014. [CrossRef] [Google Scholar]
  2. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O’Mullane, and K. Kalantar-zadeh, “Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications,” Journal of Materials Chemistry C, vol. 2, p. 5247, 2014. [CrossRef] [Google Scholar]
  3. V. Kumar, S. Masudy-Panah, C. C. Tan, T. K. S. Wong, D. Z. Chi, and G. K. Dalapati, “Copper oxide based low cost thin film solar cells,” IEEE, pp. 443–445, 2013. [Google Scholar]
  4. C. Yang, X. Su, F. Xiao, J. Jian, and J. Wang, “Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method,” Sensors and Actuators B: Chemical, vol. 158, pp. 299–303, 2011. [CrossRef] [Google Scholar]
  5. C. Espro, N. Donato, S. Galvagno, D. Aloisio, S. Leonardi, and G. Neri, “CuO Nanowires-based Electrodes for Glucose Sensors,” Chemical Engineering Transactions, vol. 41, pp. 415–420, 2014. [Google Scholar]
  6. I. A. Khan, A. Badshah, M. A. Nadeem, N. Haider, and M. A. Nadeem, “A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications,” International Journal of Hydrogen Energy, vol. 39, pp. 19609–19620, 2014. [CrossRef] [Google Scholar]
  7. A. S. Zoolfakar, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran, S. Zhuiykov, et al., “Nanostructured copper oxides as ethanol vapour sensors,” Sensors and Actuators B: Chemical, vol. 185, pp. 620–627, 2013. [CrossRef] [Google Scholar]
  8. Y. Haldorai and J.-J. Shim, “Facile synthesis of CuO nanospindles from a 3D coordination complex and its application to nanofluids,” Materials Letters, vol. 116, pp. 5–8, 2014. [CrossRef] [Google Scholar]
  9. X. Liu, Z. Li, Q. Zhang, F. Li, and T. Kong, “CuO nanowires prepared via a facile solution route and their photocatalytic property,” Materials Letters, vol. 72, pp. 49–52, 2012. [CrossRef] [Google Scholar]
  10. L. Wang, Q. Zhou, G. Zhang, Y. Liang, B. Wang, W. Zhang, et al., “A facile room temperature solution-phase route to synthesize CuO nanowires with enhanced photocatalytic performance,” Materials Letters, vol. 74, pp. 217–219, 2012. [CrossRef] [Google Scholar]
  11. J. Liu, X. Huang, Y. Li, Z. Li, Q. Chi, and G. Li, “Formation of hierarchical CuO microcabbages as stable bionic superhydrophobic materials via a room-temperature solution-immersion process,” Solid State Sciences, vol. 10, pp. 1568–1576, 2008. [CrossRef] [Google Scholar]
  12. N. von Moos, L. Maillard, and V. I. Slaveykova, “Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure,” Aquat Toxicol, vol. 161, pp. 267–75, Apr 2015. [CrossRef] [Google Scholar]
  13. R. Chakraborty, R. K. Sarkar, A. K. Chatterjee, U. Manju, A. P. Chattopadhyay, and T. Basu, “A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action,” Biochim Biophys Acta, vol. 1850, pp. 845–56, Apr 2015. [CrossRef] [Google Scholar]
  14. A. Li, H. Song, W. Wan, J. Zhou, and X. Chen, “Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries,” Electrochimica Acta, vol. 132, pp. 42–48, 2014. [CrossRef] [Google Scholar]
  15. M. Yang and Q. Gao, “Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery,” Microporous and Mesoporous Materials, vol. 143, pp. 230–235, 2011. [CrossRef] [Google Scholar]
  16. D. P. Dubal, G. S. Gund, R. Holze, and C. D. Lokhande, “Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors,” Journal of Power Sources, vol. 242, pp. 687–698, 2013. [CrossRef] [Google Scholar]
  17. Y. Fan, P.-F. Liu, and Z.-J. Yang, “CuO nanoparticles supported on carbon microspheres as electrode material for supercapacitors,” Ionics, vol. 21, pp. 185–190, 2014. [CrossRef] [Google Scholar]
  18. J. Huang, H. Wu, D. Cao, and G. Wang, “Influence of Ag doped CuO nanosheet arrays on electrochemical behaviors for supercapacitors,” Electrochimica Acta, vol. 75, pp. 208–212, 2012. [CrossRef] [Google Scholar]
  19. S. E. Moosavifard, J. Shamsi, S. Fani, and S. Kadkhodazade, “Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors,” Ceramics International, vol. 40, pp. 15973–15979, 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.