Issue |
MATEC Web Conf.
Volume 130, 2017
The International Conference on Composite Material, Polymer Science and Engineering (CMPSE2017)
|
|
---|---|---|
Article Number | 08003 | |
Number of page(s) | 5 | |
Section | Thin film and coating technology | |
DOI | https://doi.org/10.1051/matecconf/201713008003 | |
Published online | 25 October 2017 |
Study the Influence of the Anodizing Process Parameters on the Anodized Copper Hardness
Department of Manufacturing and Material Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
a Corresponding author: mahmoodfattah@yahoo.com
The metals anodization process used to enhance the surface hardness and corrosion resistance. This study developed a durable hard Nano copper oxide coating on copper using anodization technique in solutions of 0.1 to 0.5 M oxalate concentrations and 0 to 24°C operating temperature. The settings of the process parameters determined by using Taguchi’s experimental design method. The EDX and XRD results confirm the formation of cupric oxide coating with monoclinic lattice crystalline structures. The FESEM results for the coated samples showed that the grain size was in the range between 25 to 68 nm. Microhardness tests for the anodized copper samples characterized by microhardness tester. Analysis of Variance for the orthogonal arrays of Taguchi identified that the most affecting parameter on the microhardness of the coating was the anodizing temperature. The results show that the hardness of the anodized coating was decreased with the anodizing temperature, where maximum hardness, with smaller grain size, were produced at lower anodizing temperatures.
© The authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.