Open Access
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
Article Number 01004
Number of page(s) 7
Section Automation control theory and Applications
Published online 17 February 2016
  1. G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses. IEEE Trans. Autom. Control. 26(2), pp. 301 – 320, (1981, Apr.). [CrossRef] [Google Scholar]
  2. G. Zames, B. A. Francis, Feedback, minimax sensitivity, and optimal robustness. IEEE Trans. Autom. Control. 28(5), pp. 585 – 601. (1983, May). [CrossRef] [Google Scholar]
  3. K. Glover, J.C. Doyle, State-space formulae for all stabilizing controllers that satisfy an H-norm bound and relations to risk sensitivity. Syst. & Control Lett. (11), pp. 167–172, (1988). [CrossRef] [Google Scholar]
  4. J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, State space solutions to standard H2 and Hcontrol problems. IEEE Trans. Autom. Control. 34(8), pp. 831 – 847, (1989, Aug.). [CrossRef] [Google Scholar]
  5. I. K. Konstantopoulos, P. J. Antsaklis,Robust stability of linear continuous and discrete time systems under parametric uncertainty, Elect. Eng. Univ. Notre Dame, Tech. Rep. ISIS-94-006, (1994, Mar.). [Google Scholar]
  6. S. R. Kolla, R. K. Yedavalli & J. B. Farison, Robust stability bounds on time-varying perturbations for state-space models of linear discrete-time systems. Int. J. Control. 50(1), pp. 151 – 159, (2007, Apr.). [CrossRef] [Google Scholar]
  7. Q. L. Han, Robust Stability for a Class of Linear Systems with Time-Varying Delay and Nonlinear Perturbations. Comput. & Math. Applicat. 47(8–9), pp. 1201 – 1209, (2004, Apr.-May). [CrossRef] [Google Scholar]
  8. D. S. Bernstein, C.V. Hollot, Robust stability for sampled-data control systems. Syst. & Control Lett. 13(3), pp. 217 – 226, (1989, Sept.). [CrossRef] [Google Scholar]
  9. T. Chen, B. Francis, Optimal Sampled-Data Control Systems, 1st ed., Springer-Verlag, London, pp. 37 – 40, 1994. [Google Scholar]
  10. M. B. Malik, F. M. Malik, K. Munawar, Orientation control of a 3-D under-actuated drill machine based on discrete-time equivalent model. Int. J. Robotics & Automat. 27(4). DOI: 10.2316/Journal.206.2012.4.206-3324, (2012). [CrossRef] [Google Scholar]
  11. W. H. Kwon, A. E. Pearson, Feedback Stabilization of Linear Systems with Delayed Control. IEEE Trans. Autom. Control. 25(2), pp. 266 – 269, (1980, Apr.). [CrossRef] [Google Scholar]
  12. J. H. Kim, E. T. Jeung, H. B. Park, Robust control for parameter uncertain delay systems in state and control input. Automatica, 32(9), pp. 1337 – 1339, (1996, Sept.). [CrossRef] [Google Scholar]
  13. Y. Xia, G.P. Liu, P. Shi, J. Chen, D. Rees, J. Liang Sliding mode control of uncertain linear discrete time systems with input delay. Control Theory Applicat., IET, 1(4), pp. 1169 – 1175, (2007, July). [CrossRef] [Google Scholar]
  14. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis & Design, 2nd ed., Wiley, Hoboken, New Jersey, pp. 371 – 392, 2005. [Google Scholar]
  15. M. Green, D. J.N. Limebeer, Linear Robust Control, Pearson Education, Inc., New York, pp. 505 – 507, 1995. [Google Scholar]
  16. Mechanical Engineers’ Handbook: Instrumentation, Systems, Controls, and MEMS, Vol. 2, 3rd ed. John Wiley & Sons, Inc., pp. 5, 2006. [Google Scholar]
  17. D.-W. Gu, P. Hr. Petkov and M. M. Konstantinov, Robust Control Design with MATLAB, Springer-Verlag, London, pp. 24 – 27, 2005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.