Open Access
Issue
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
Article Number 01004
Number of page(s) 7
Section Automation control theory and Applications
DOI https://doi.org/10.1051/matecconf/20164201004
Published online 17 February 2016
  1. G. Zames, Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses. IEEE Trans. Autom. Control. 26(2), pp. 301 – 320, (1981, Apr.). [CrossRef]
  2. G. Zames, B. A. Francis, Feedback, minimax sensitivity, and optimal robustness. IEEE Trans. Autom. Control. 28(5), pp. 585 – 601. (1983, May). [CrossRef]
  3. K. Glover, J.C. Doyle, State-space formulae for all stabilizing controllers that satisfy an H-norm bound and relations to risk sensitivity. Syst. & Control Lett. (11), pp. 167–172, (1988). [CrossRef]
  4. J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, State space solutions to standard H2 and Hcontrol problems. IEEE Trans. Autom. Control. 34(8), pp. 831 – 847, (1989, Aug.). [CrossRef]
  5. I. K. Konstantopoulos, P. J. Antsaklis,Robust stability of linear continuous and discrete time systems under parametric uncertainty, Elect. Eng. Univ. Notre Dame, Tech. Rep. ISIS-94-006, (1994, Mar.).
  6. S. R. Kolla, R. K. Yedavalli & J. B. Farison, Robust stability bounds on time-varying perturbations for state-space models of linear discrete-time systems. Int. J. Control. 50(1), pp. 151 – 159, (2007, Apr.). [CrossRef]
  7. Q. L. Han, Robust Stability for a Class of Linear Systems with Time-Varying Delay and Nonlinear Perturbations. Comput. & Math. Applicat. 47(8–9), pp. 1201 – 1209, (2004, Apr.-May). [CrossRef]
  8. D. S. Bernstein, C.V. Hollot, Robust stability for sampled-data control systems. Syst. & Control Lett. 13(3), pp. 217 – 226, (1989, Sept.). [CrossRef]
  9. T. Chen, B. Francis, Optimal Sampled-Data Control Systems, 1st ed., Springer-Verlag, London, pp. 37 – 40, 1994.
  10. M. B. Malik, F. M. Malik, K. Munawar, Orientation control of a 3-D under-actuated drill machine based on discrete-time equivalent model. Int. J. Robotics & Automat. 27(4). DOI: 10.2316/Journal.206.2012.4.206-3324, (2012). [CrossRef]
  11. W. H. Kwon, A. E. Pearson, Feedback Stabilization of Linear Systems with Delayed Control. IEEE Trans. Autom. Control. 25(2), pp. 266 – 269, (1980, Apr.). [CrossRef]
  12. J. H. Kim, E. T. Jeung, H. B. Park, Robust control for parameter uncertain delay systems in state and control input. Automatica, 32(9), pp. 1337 – 1339, (1996, Sept.). [CrossRef]
  13. Y. Xia, G.P. Liu, P. Shi, J. Chen, D. Rees, J. Liang Sliding mode control of uncertain linear discrete time systems with input delay. Control Theory Applicat., IET, 1(4), pp. 1169 – 1175, (2007, July). [CrossRef]
  14. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis & Design, 2nd ed., Wiley, Hoboken, New Jersey, pp. 371 – 392, 2005.
  15. M. Green, D. J.N. Limebeer, Linear Robust Control, Pearson Education, Inc., New York, pp. 505 – 507, 1995.
  16. Mechanical Engineers’ Handbook: Instrumentation, Systems, Controls, and MEMS, Vol. 2, 3rd ed. John Wiley & Sons, Inc., pp. 5, 2006.
  17. D.-W. Gu, P. Hr. Petkov and M. M. Konstantinov, Robust Control Design with MATLAB, Springer-Verlag, London, pp. 24 – 27, 2005.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.