Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 01006
Number of page(s) 5
Section Thermal Engineering & Energy Conversion
Published online 11 January 2016
  1. G.J. Ranque, Experiences Sur la Détente Giratoire Avec Productions Simultanees d´un Echappement d´Air Chaud et d’un Echappement d’Air Froid, Journal de Physique et Le Radium, Vol.4, 1933, pp.112–114. [Google Scholar]
  2. R. Hilsch, The Use of Expansion of Gases in a Centrifugal Field as Cooling Process, The Review of Scientific Instruments, Vol.18, pp.108–113, (1947). [Google Scholar]
  3. S. Eiamsa-ard and P. Promvonge, Review of Ranque-Hilsch Effects in Vortex Tubes, Renewable and Sustainable Energy Rev., Vol. 12, 2008, pp.1822–1842. [Google Scholar]
  4. D. Bizzarri et. al., Propulsion vehicle integration for reusable launcher using in-flight oxygen collection, Original Research Article, Aerosp. Sci. Technol., Vol. 12, No. 6, 2008, pp. 429–435. [CrossRef] [Google Scholar]
  5. H. Kubota, et al. (Toyota Industries Corporation), Exhaust Device and Exhaust Method in Internal Combustion Engine, Japanese Unexamined Patent Application Publication No.2010–196507. [Google Scholar]
  6. K. Dincer et. al., Experimental investigation and exergy analysis of the performance of a counter flow Ranque-Hilsch vortex tube with regard to nozzle cross-section areas, Int. J. Refrigeration, Vol. 33, 2010, pp. 954–962. [CrossRef] [Google Scholar]
  7. H. Takahama, Energy Separation of Gas by Vortex Tube, Tran. J. Soc. Mech. Eng., Vol. 68, No. 560, 1965, pp. 1255–1263 (in Japanese). [Google Scholar]
  8. M.H. Saidi and M.S. Valipour, Experimental modeling of vortex tube refrigerator, Appl. Therm. Eng., Vol. 23, pp. 1971–1980, 2003. [CrossRef] [Google Scholar]
  9. Upendra Behera et al., CFD analysis and experimental investigations towards optimizing the parameters of Ranque–Hilsch vortex tube, Int. J. Heat Mass Transfer., Vol. 48, 2005, pp. 1961–1973. [Google Scholar]
  10. S.U. Nimbalkar and M.R. Muller, An experimental investigation of the optimum geometry for the cold end orifice of a vortex tube, Appl. Therm. Eng., Vol. 29, 2009, pp. 509–514. [CrossRef] [Google Scholar]
  11. Y.T. Wu et. al., Modification and Experimental Research on Vortex Tube, Int. J. Refrigeration, Vol. 30, 2007, pp.1042–1049. [Google Scholar]
  12. O. Aydin and B. Markal, A New Vortex Generator Geometry for a Counter-Flow Ranque-Hilsch Vortex Tube, Appl. Therm. Eng., Vol.30, 2010, pp.2505–2510. [Google Scholar]
  13. B.Markal et. al., An Experimental Study on the Effect of the Valve Angle of Counter-Flow Ranque-Hilsch Vortex Tubes on Thermal Energy Separation, Exp. Therm. Fluid Sci., Vol.34, 2010, pp.966–971. [CrossRef] [Google Scholar]
  14. Kun Chang et al., Experimental investigation of vortex tube refrigerator with a divergent hot tube, Int. J. Refrigeration, Vol. 34, 2011, pp. 322–327. [CrossRef] [Google Scholar]
  15. M. Avci, The Effects of Nozzle Aspect Ratio and Nozzle Number on the Performance of the Ranque-Hilsch Vortex Tube, Appl. Therm. Eng., Vol. 50, 2013, pp.302–308. [CrossRef] [Google Scholar]
  16. Mohd Hazwan bin Yusof, Hiroshi Katanoda, and Hiromitsu Morita, Temperature and Pressure Measurements at Cold Exit of Counterflow Vortex Tube with Flow Visualization of Reversed Flow, Journal of Thermal Science Vol.24(1), 2015, pp.67–72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.