Open Access
MATEC Web of Conferences
Volume 27, 2015
2015 4th International Conference on Engineering and Innovative Materials (ICEIM 2015)
Article Number 02002
Number of page(s) 6
Section Novel materials and properties
Published online 20 October 2015
  1. Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Engineering 12 (2006) 1197–211. [CrossRef] [PubMed] [Google Scholar]
  2. H. W. Kim, H. E. Kim and J. C. Knowles, Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial, Advanced Functional Materials 16 (2006) 1529–1535. [CrossRef] [Google Scholar]
  3. D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7 (1996) 216–223. [Google Scholar]
  4. N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances 28 (2010) 325–347. [Google Scholar]
  5. A. Theron, E. Zussman and A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology 12 (2001) 384–390. [CrossRef] [Google Scholar]
  6. C.-C. Liao, C.-C. Wang, K.-C. Shih and C.-Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties, European Polymer Journal 47 (2011) 911–924. [CrossRef] [Google Scholar]
  7. P. Katta, M. Alessandro, R. D. Ramsier and G. G. Chase, Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector, Nano Letters 4 (2004) 2215–2218. [CrossRef] [Google Scholar]
  8. R. Dersch, T. Liu, A. K. Schaper, A. Greiner and J. H. Wendorff, Electrospun nanofibers: Internal structure and intrinsic orientation, Journal of Polymer Science Part A: Polymer Chemistry 41 (2003) 545–553. [CrossRef] [Google Scholar]
  9. A. Cipitria, A. Skelton, T. R. Dargaville, P. D. Dalton and D. W. Hutmacher, Design, fabrication and characterization of PCL electrospun scaffolds – A review, Journal of Materials Chemistry 21 (2011) 9419–9453. [CrossRef] [Google Scholar]
  10. R. Langer and J. P. Vacanti, Tissue engineering, Science 260 (1993) 920–6. [CrossRef] [PubMed] [Google Scholar]
  11. W.-J. Li, R. L. Mauck, J. A. Cooper, X. Yuan and R. S. Tuan, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering, Journal of Biomechanics 40 (2007) 1686–1693. [CrossRef] [Google Scholar]
  12. N. L. Nerurkar, S. Sen, A. H. Huang, D. M. Elliott and R. L. Mauck, Engineered disc-like angle-ply structures for intervertebral disc replacement, Spine 35 (2010) 867–873. [CrossRef] [Google Scholar]
  13. R. M. Seldes, V. Tan, J. Hunt, M. Katz, R. Winiarsky and J. Robert H. Fitzgerald, Anatomy, Histologic Features, and Vascularity of the Adult Acetabular Labrum, Clinical Orthopaedics and Related Research 382 (2001) 232–240. [Google Scholar]
  14. M. Benjamin and E. J. Evans, Fibrocartilage, Journal of Anatomy 171 (1990) 1–15. [Google Scholar]
  15. M. Benjamin and J. R. Ralphs, Fibrocartilage in tendons and ligaments - an adaptation to compressive load, Journal of Anatomy 193 (1998) 481–494. [CrossRef] [Google Scholar]
  16. L. Koepsell, T. Remund, J. Bao, D. Neufeld, H. Fong and Y. Deng, Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers, Journal of Biomedical Materials Research Part A 99A (2011) 564–575. [CrossRef] [Google Scholar]
  17. B. M. Baker and R. L. Mauck, The effect of nanofiber alignment on the maturation of engineered meniscus constructs, Biomaterials 28 (2007) 1967–1977. [CrossRef] [PubMed] [Google Scholar]
  18. N. L. Nerurkar, W. Han, R. L. Mauck and D. M. Elliott, Homologous structure–function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds, Biomaterials 32 (2011) 461–468. [CrossRef] [Google Scholar]
  19. D. Li, Y. Wang and Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Letters 3 (2003) 1167–1171. [CrossRef] [Google Scholar]
  20. B. Sundaray, V. Subramanian, T. S. Natarajan, R.-Z. Xiang, C.-C. Chang and W.-S. Fann, Electrospinning of continuous aligned polymer fibers, Applied Physics Letters 84 (2004) 1222–1224. [CrossRef] [Google Scholar]
  21. P. D. Dalton, D. Klee and M. Möller, Electrospinning with dual collection rings, Polymer 46 (2005) 611–614. [CrossRef] [Google Scholar]
  22. M. R. Badrossamay, H. A. McIlwee, J. A. Goss and K. K. Parker, Nanofiber Assembly by Rotary Jet-Spinning, Nano Letters 10 (2010) 2257–2261. [CrossRef] [Google Scholar]
  23. C.-C. Liao, C.-C. Wang and C.-Y. Chen, Stretchinginduced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet, Polymer 52 (2011) 4303–4318. [CrossRef] [Google Scholar]
  24. C.-C. Liao, C.-C. Wang, C.-Y. Chen and W.-J. Lai, Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties, Polymer 52 (2011) 2263–2275. [CrossRef] [Google Scholar]
  25. D. Hutmacher, M. B. Hürzeler and H. Schliephake, A Review of Material Properties of Biodegradable and Bioresorbable Polymers and Devices for GTR and GBR Applications, International Journal of Oral and Maxillofacial Implants 11 (1996) 667–678. [Google Scholar]
  26. M. A. Woodruff and D. W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science 35 (2010) 1217–1256. [Google Scholar]
  27. M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase and J. F. Rabolt, Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers, Journal of the American Chemical Society 129 (2007) 2777–2782. [CrossRef] [Google Scholar]
  28. T. Kongkhlang, K. Tashiro, M. Kotaki and S. Chirachanchai, Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers, Journal of the American Chemical Society 130 (2008) 15460–15466. [CrossRef] [Google Scholar]
  29. A. Thorvaldsson, H. Stenhamre, P. Gatenholm and P. Walkenström, Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration, Biomacromolecules 9 (2008) 1044–1049. [CrossRef] [Google Scholar]
  30. C. D. Smith, S. Masouros, A. M. Hill, A. A. Amis and A. M. J. Bull, A biomechanical basis for tears of the human acetabular labrum, British Journal of Sports Medicine 43 (2009) 574–578. [CrossRef] [Google Scholar]
  31. T. Ishiko, M. Naito and S. Moriyama, Tensile properties of the human acetabular labrum-the first report, Journal of Orthopaedic Research 23 (2005) 1448–53. [CrossRef] [Google Scholar]
  32. W. Petersen, F. Petersen and B. Tillmann, Structure and vascularization of the acetabular labrum with regard to the pathogenesis and healing of labral lesions, Archives of Orthopaedic and Trauma Surgery 123 (2003) 283–288. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.