Open Access
Issue
MATEC Web of Conferences
Volume 20, 2015
AVE2014 - 4ième Colloque Analyse Vibratoire Expérimentale / Experimental Vibration Analysis
Article Number 03003
Number of page(s) 7
Section Industrial application
DOI https://doi.org/10.1051/matecconf/20152003003
Published online 27 January 2015
  1. SLOCUM, Alexander H. Precision machine design. SME (1992) [Google Scholar]
  2. NAWARA, L., KOWALSKI, M., et SLADEK, J. The influence of kinematic errors on the profile shapes by means of CMM. CIRP Annals-Manufacturing Technology, (1989), 38, no 1, p. 511–516 [CrossRef] [Google Scholar]
  3. SALGADO , MAa, LÓPEZ DE LACALLE, L. N. , LAMIKIZ, A., et al. Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. Int. J. Machine Tools and Manufacture (2005), 45, no 6, p. 727–739 [CrossRef] [Google Scholar]
  4. DE LACALLE, LN Lâopez et LAMIKIZ, A. (ed.). Machine tools for high performance machining. Springer (2009) [CrossRef] [Google Scholar]
  5. NAKAZAWA, Hiromu et TAKEGUCHI, R. Principles of precision engineering. Oxford: Oxford university press (1994) [Google Scholar]
  6. KIM, G. M., KIM, B. H., et CHU, C. N. Estimation of cutter deflection and form error in ball-end milling processes. Int. J. Machine Tools and Manufacture (2003), 43, no 9, p. 917–924 [CrossRef] [Google Scholar]
  7. SARTORI, S. et ZHANG, G. X. Geometric error measurement and compensation of machines. CIRP Annals-Manufacturing Technology (1995), 44, no 2, p. 599–609 [CrossRef] [Google Scholar]
  8. G. Levaillant, M. Dessoly, P. Ghidossi et al. Usinage par enlèvement de copeaux : de la technologie aux applications industrielles. EYROLLES (2005) [Google Scholar]
  9. SAHALI, M. A., BELAIDI, I., et SERRA, R. Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. IJAMT, (2014), p. 1–12 [Google Scholar]
  10. LEE , Kwon-Hee et PARK , Gyung-Jin. Robust optimization considering tolerances of design variables. Comp & Struct, (2001), 79, no 1, p. 77–86 [Google Scholar]
  11. DOLTSINIS , Ioannis et KANG , Zhan. Robust design of structures using optimization methods. CMAME, (2004), 193, no 23, p. 2221–2237 [Google Scholar]
  12. DU , Xiaoping et CHEN , Wei. Towards a better understanding of modeling feasibility robustness in engineering design. JMD, (2000), 122, p. 385 [Google Scholar]
  13. DAS , Indraneel. Robustness optimization for constrained nonlinear programming problems. EO. A35, (2000), 32, no 5, p. 585–618 [Google Scholar]
  14. JURECKA, Florian. Robust design optimization based on metamodeling techniques. Shaker, (2007) [Google Scholar]
  15. BAUDOUI, Vincent, KLOTZ, Patricia, HIRIART-URRUTY, Jean-Baptiste, et al. LOcal Uncertainty Processing (LOUP) method for multidisciplinary robust design optimization. Structural and Multidisciplinary Optimization, 2012, 46, no 5, p. 711–726 [CrossRef] [Google Scholar]
  16. RAMAKRISHNAN, Balaji et RAO, S. S. A robust optimization approach using Taguchi's loss function for solving nonlinear optimization problems. ADA, (1991), 32, no 1, p. 241–248 [Google Scholar]
  17. APLEY, Daniel W., LIU, Jun, et CHEN, Wei. Understanding the effects of model uncertainty in robust design with computer experiments. JMD, (2006), 128, p. 945 [Google Scholar]
  18. LEHMAN, Jeffrey S., SANTNER, Thomas J., et NOTZ, William I. Designing computer experiments to determine robust control variables. SS (2004), 14, no 2, p. 571–590 [Google Scholar]
  19. SUN , Guangyong, LI , Guangyao, GONG , Zhihui, et al. Multiobjective robust optimization method for drawbead design in sheet metal forming. Materials & Design, 2010, 31, no 4, p. 1917–1929 [CrossRef] [Google Scholar]
  20. JEANG, Angus. Robust cutting parameters optimization for production time via computer experiment. AMM, (2011), 35, no 3, p. 1354–1362 [Google Scholar]
  21. LANDERS, Robert G. et ULSOY, A. Galip. Robust machining force control with process compensation (2003) [Google Scholar]
  22. IVESTER, R. W. et DANAI, K. Intelligent control of machining under modeling uncertainty. CIRP MS, 1996, 25, no 1, p. 73–79 [Google Scholar]
  23. HUANG, YongAn, ZHANG, Xiaoming, et XIONG, Youlun. Finite Element Analysis of Machining Thin-Wall Parts: Error Prediction and Stability Analysis (2012) [Google Scholar]
  24. PAIVA, A. P., CAMPOS, P. H., FERREIRA, J. R., et al. A multivariate robust parameter design approach for optimization of AISI 52100 hardened steel turning with wiper mixed ceramic tool. IJRMHM, (2012), 30, no 1, p. 152–163 [Google Scholar]
  25. SCHIMMERLING, Paul, SISSON, Jean-Claude, et ZAÏDI, Ali. Pratique des plans d'expériences. Tec et doc-Lavoisier (1998) [Google Scholar]
  26. TINSSON, Walter. Plans d'expérience: constructions et analyses statistiques. Springer (2010) [Google Scholar]
  27. CHIBANE, Hicham, SERRA, Roger, et LEROY, René. Optimisation des paramètres de coupe en tournage [Google Scholar]
  28. ISO 3685, Tool-Life Testing with Single-Point Turning Tools, ISO 3685:1993(E), International Standard, 2nd ed., Nov 15 (1993) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.