Open Access
MATEC Web of Conferences
Volume 20, 2015
AVE2014 - 4ième Colloque Analyse Vibratoire Expérimentale / Experimental Vibration Analysis
Article Number 03002
Number of page(s) 5
Section Industrial application
Published online 27 January 2015
  1. M. Kedadouche, M. Thomas and A. Tahan. May 2014. Cyclostationarity applied to acoustic emission and development of a new indicator for monitoring bearing defects. Mechanics & Industry, 16 p. [Google Scholar]
  2. M.S. Safizadeh, A.A. Lakis and M. Thomas, Time-Frequency and Their Application to Machinery Fault Detection, International Journal of Comadem, 5, 2 (2002), pp. 41–57 [Google Scholar]
  3. W. Gong, T. Obikawa, T. Shirakashi, Monitoring of tool wear states in turning based on wavelet analysis, JSME International Journal (Series C) 40, 3 (1997), pp. 447–453 [CrossRef] [Google Scholar]
  4. Y. Pan, J. Chen, L. Guo, Robust bearing performance degradation assessment method based on improved wavelet packet - support vector data description, Mechanical Systems and Signal Processing, 23, 3 (2009), 669–681 [CrossRef] [Google Scholar]
  5. Sassi S., Badri B. and Thomas M., July 2008. Tracking surface degradation of ball bearings by means of new time domain scalar descriptors, International Journal of Comadem, 11 (3), 36–45 [Google Scholar]
  6. M. Kedadouche, M. Thomas and A. Tahan, 21 april 2014. Monitoring bearing defects by using a method combining EMD, MED and TKEO. Advances in Acoustics and Vibration. Hindawi Publishing Corporation, 2014, 10 p. [Google Scholar]
  7. J. Antoni. The spectral kurtosis: a useful tool for characterising non-stationary signals, MSSP, 20, Issue 2 (2006), pp. 282–307 [Google Scholar]
  8. Meyer Y. , Ondelettes et Opérateurs, Hermann, 1990 [Google Scholar]
  9. S.G. Mallat, A Wavelet Tour of Signal Processing, Second Ed., Academic Press, New York (1999) [Google Scholar]
  10. I. Daubechies, The wavelet transformation, time–frequency localization and signal analysis, IEEE Transactions on Information Theory 36 (1990), 961–1005 [Google Scholar]
  11. L. Eren, and M. J. Devaney, Bearing Damage Detection via Wavelet Packet Decomposition of the Stator Current, Transactions on instrumentation and measurement, 53, 2 (2004), pp. 431–436 [Google Scholar]
  12. Badri B., Thomas M. and Sassi S., A shock filter for bearing slipping detection and multiple damage diagnosis, International Journal of Mechanics, 5, 4 (July 2011) 318–326 [Google Scholar]
  13. M. Blodt, D. Bonacci, J. Regnier, M. Chabert and J. Faucher. On-line Monitoring of Mechanical Faults in Variable-Speed Induction Motor Drives Using the Wigner Distribution. IEEE Transactions on Industrial Electronics, 55, 2 (2008), pp. 522–533 [CrossRef] [Google Scholar]
  14. Yan Long, Liu Gang and Guo Jun, Selection of the best wavelet base for speech signal, Proceedings of IMVSP, 20-22 Oct. 2004. IEEE conference ISBN:0-7803-8687-6 [Google Scholar]
  15. Marc Thomas, Reliability, predictive maintenance and machines vibrations. (In french), Presses de l'Université du Québec (PUQ), Canada, (2011) D3357, ISBN 978-2-7605-3357-8 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.