Issue |
MATEC Web of Conferences
Volume 20, 2015
AVE2014 - 4ième Colloque Analyse Vibratoire Expérimentale / Experimental Vibration Analysis
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 7 | |
Section | Industrial application | |
DOI | https://doi.org/10.1051/matecconf/20152003003 | |
Published online | 27 January 2015 |
Bi-objective robust optimization of machined surface quality and productivity under vibrations limitation
1 UMBB, Equipe de recherche en mécanique et ingénierie des systèmes et procédés, Laboratoire d'Energétique, Mécanique et Ingénieries, Université M'hamed Bougara de Boumerdes 35000, Algerie
2 INSA Centre Val de Loire, Université François Rabelais, Laboratoire de Mécanique et Rhéologie – CEROC, 3 rue de la chocolaterie CS 23410, 41034 Blois Cedex, France
a e-mail: Akli_Sahali@hotmail.fr
b e-mail: roger.serra@insa-cvl.fr
c e-mail: idir-belaidi@umbb.dz
d e-mail: hicham.chibane@univ-tours.fr
In this contribution, a bi-objective robust optimization of cutting parameters, with the taking into account uncertainties inherent in the tool wear and the tool deflection for a turning operation is presented. In a first step, we proceed to the construction of substitution models that connect the cutting parameters to the variables of interest based on design of experiments. Our two objectives are the best machined surface quality and the maximum productivity under consideration of limitations related to the vibrations and the range of the three cutting parameters. Then, using the developed genetic algorithm that based on a robust evaluation mechanism of chromosomes by Monte-Carlo simulations, the influence and interest of the uncertainties integration in the machining optimization is demonstrated. After comparing the classical and robust Pareto fronts, A surface quality less efficient but robust can be obtained with the consideration of uncontrollable factors or uncertainties unlike that provides the deterministic and classical optimization for the same values of productivity.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.