Issue |
MATEC Web Conf.
Volume 90, 2017
The 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/20179001006 | |
Published online | 20 December 2016 |
Clustering of frequency spectrums from different bearing fault using principle component analysis
Advanced Structural Integrity and Vibration Research Group (ASIVR), Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang
* Corresponding author: fadhlan@ump.edu.my
In studies associated with the defect in rolling element bearing, signal clustering are one of the popular approach taken in attempt to identify the type of defect. However, the noise interruption are one of the major issues which affect the degree of effectiveness of the applied clustering method. In this paper, the application of principle component analysis (PCA) as a pre-processing method for hierarchical clustering analysis on the frequency spectrum of the vibration signal was proposed. To achieve the aim, the vibration signal was acquired from the operating bearings with different condition and speed. In the next stage, the principle component analysis was applied to the frequency spectrums of the acquired signals for pattern recognition purpose. Meanwhile the mahalanobis distance model was used to cluster the result from PCA. According to the results, it was found that the change in amplitude at the respective fundamental frequencies can be detected as a result from the application of PCA. Meanwhile, the application of mahalanobis distance was found to be suitable for clustering the results from principle component analysis. Uniquely, it was discovered that the spectrums from healthy and inner race defect bearing can be clearly distinguished from each other even though the change in amplitude pattern for inner race defect frequency spectrum was too small compared to the healthy one. In this work, it was demonstrated that the use of principle component analysis could sensitively detect the change in the pattern of the frequency spectrums. Likewise, the implementation of mahalanobis distance model for clustering purpose was found to be significant for bearing defect identification.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.