Open Access
Issue
MATEC Web of Conferences
Volume 1, 2012
CSNDD 2012 – International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 02002
Number of page(s) 4
Section Time-Delayed Feedback Control: Theory and Application
DOI https://doi.org/10.1051/matecconf/20120102002
Published online 09 July 2012
  1. R. Nayak, Contact vibrations, J. Sound Vib, 22, (1972) 297–322. [CrossRef] [Google Scholar]
  2. D. Hess, A. Soom, Normal vibrations and friction under harmonic loads: Part 1-Hertzian contact. ASME Journal of Tribology, 113, (1991)80–86. [CrossRef] [Google Scholar]
  3. J. Sabot, P. Krempf, C. Janolin, Nonlinear vibrations of a sphere-plane contact excited by a normal load. J Sound Vib 214, (1998)359–375. [CrossRef] [Google Scholar]
  4. R. Carson, K. Johnson, Surface corrugations spontaneously generated in a rolling contact disc machine., 17 Wear (1971) 59–72. [Google Scholar]
  5. A. Soom, JW. Chen, Simulation of random surface roughness-induced contact vibrations at Hertzian contacts during steady sliding. ASME Journal of Tribology, 108, (1986) 123–127. [CrossRef] [Google Scholar]
  6. E. Rigaud, P. Perret-Liaudet, Experiments and numerical results on nonlinear vibrations of an impacting hertzian contact. part 1: harmonic excitation. J Sound Vib, 265, (2003)289–307. [CrossRef] [Google Scholar]
  7. J. Perret-Liaudet, E. Rigaud, Response of an impacting Hertzian contact to an order-2 subharmonic excitation : Theory and experiments, J Sound Vib, 296, (2003) 319–333. [CrossRef] [Google Scholar]
  8. J. Perret-Liaudet, E. Rigaud, Superharmonic resonance of order 2 for an impacting Hertzian contact oscillator: Theory and experiments., J Comput Nonlinear Dyn, 2, (2007) 190–196. [CrossRef] [Google Scholar]
  9. A. Bichri, M. Belhaq, J. Perret-Liaudet, Control of vibroimpact dynamic of a single-sided-Hertzian contact forced oscillator. Nonlinear Dyn, 63, (2011) 51–60. [CrossRef] [Google Scholar]
  10. A. Bichri, M. Belhaq, Control of a forced impacting Hertzian contact oscillator near sub- and superharmonics of order 2. J Comput Nonlinear Dyn, Issue date: Jan (2012);7(1). [CrossRef] [Google Scholar]
  11. H. Hu, EH. Dowell, L. Virgin, Resonances of a harmonically forced during oscillator with time delay state feedback. Nonlinear Dyn, 15, (1998) 311–327. [CrossRef] [Google Scholar]
  12. Ji. JC, AYT.Leung, Resonances of a nonlinear SDOF system with two time-delays in linear feed-back control. Nonlinear Dyn, (2002) 253, 985. [Google Scholar]
  13. Y. Jin, H. Hu, Primary resonance of a during oscillator with two distinct time delays in state feedback under narrow-Bband random excitation. In: Proceedings of the ASME (2007), International Design and Engineering Technical Conference And Computers and Information in Engineering Conference. Las Vegas; NV (2007). [Google Scholar]
  14. MF.Daqaq, GW. Vogl, Frequency island in the primary resonance of nonlinear delay systems. ENOC (2008), Saint Petersburg, Russia; June, 30-July, 4 (2008). [Google Scholar]
  15. FM. Atay, Van der Pol’s oscillator under delayed feedback. J Sound Vib, 218, (1998) 333–339. [CrossRef] [Google Scholar]
  16. A. Maccari, Vibration control for the primary resonance of the van der Pol oscillator by a time delay state feedback., Int J Non-Linear Mech, 38, (2003)123–131. [CrossRef] [Google Scholar]
  17. A. Maccari, Delayed feedback control for a parametrically excited van der Pol oscillator., Physica Scripta, 76, (2007) 526–532. [CrossRef] [Google Scholar]
  18. AF. EI-Bassiouny, Stability and oscillation of two coupled During equations with time delay state feedback., Physica Scripta, 74, (2006) 726–35. [CrossRef] [Google Scholar]
  19. SM. Sah, M. Belhaq, Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator. Chaos, Solitons & Fractals, 37, (2008) 1489–1496. [Google Scholar]
  20. M. Belhaq, SM. Sah Fast parametrically excited van der Pol oscillator with time delay state feed-back., Int J Non-linear Mech, 34, (2008) 124–130. [CrossRef] [Google Scholar]
  21. M. Belhaq, SM. Sah, Horizontal fast excitation in delayed van der Pol oscillator., Commun Nonlinear Sci Numer Simul, 13, (2008)1706–1713. [CrossRef] [Google Scholar]
  22. MK. Suchorsky, MS. Sah, RH. Rand, Using delay to quench undesirable vibrations, Nonlinear Dyn, 62, (2010) 407–416. [CrossRef] [Google Scholar]
  23. KL. Johnson, Contact Mechanics. Cambridge University Press: Cambridge; (1979). [Google Scholar]
  24. AH. Nayfeh, DT. Mook, Nonlinear Oscillations. Wiley, New York; (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.