Open Access
Issue
MATEC Web of Conferences
Volume 1, 2012
CSNDD 2012 – International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 02002
Number of page(s) 4
Section Time-Delayed Feedback Control: Theory and Application
DOI https://doi.org/10.1051/matecconf/20120102002
Published online 09 July 2012
  1. R. Nayak, Contact vibrations, J. Sound Vib, 22, (1972) 297–322. [CrossRef]
  2. D. Hess, A. Soom, Normal vibrations and friction under harmonic loads: Part 1-Hertzian contact. ASME Journal of Tribology, 113, (1991)80–86. [CrossRef]
  3. J. Sabot, P. Krempf, C. Janolin, Nonlinear vibrations of a sphere-plane contact excited by a normal load. J Sound Vib 214, (1998)359–375. [CrossRef]
  4. R. Carson, K. Johnson, Surface corrugations spontaneously generated in a rolling contact disc machine., 17 Wear (1971) 59–72.
  5. A. Soom, JW. Chen, Simulation of random surface roughness-induced contact vibrations at Hertzian contacts during steady sliding. ASME Journal of Tribology, 108, (1986) 123–127. [CrossRef]
  6. E. Rigaud, P. Perret-Liaudet, Experiments and numerical results on nonlinear vibrations of an impacting hertzian contact. part 1: harmonic excitation. J Sound Vib, 265, (2003)289–307. [CrossRef]
  7. J. Perret-Liaudet, E. Rigaud, Response of an impacting Hertzian contact to an order-2 subharmonic excitation : Theory and experiments, J Sound Vib, 296, (2003) 319–333. [CrossRef]
  8. J. Perret-Liaudet, E. Rigaud, Superharmonic resonance of order 2 for an impacting Hertzian contact oscillator: Theory and experiments., J Comput Nonlinear Dyn, 2, (2007) 190–196. [CrossRef]
  9. A. Bichri, M. Belhaq, J. Perret-Liaudet, Control of vibroimpact dynamic of a single-sided-Hertzian contact forced oscillator. Nonlinear Dyn, 63, (2011) 51–60. [CrossRef]
  10. A. Bichri, M. Belhaq, Control of a forced impacting Hertzian contact oscillator near sub- and superharmonics of order 2. J Comput Nonlinear Dyn, Issue date: Jan (2012);7(1). [CrossRef]
  11. H. Hu, EH. Dowell, L. Virgin, Resonances of a harmonically forced during oscillator with time delay state feedback. Nonlinear Dyn, 15, (1998) 311–327. [CrossRef]
  12. Ji. JC, AYT.Leung, Resonances of a nonlinear SDOF system with two time-delays in linear feed-back control. Nonlinear Dyn, (2002) 253, 985.
  13. Y. Jin, H. Hu, Primary resonance of a during oscillator with two distinct time delays in state feedback under narrow-Bband random excitation. In: Proceedings of the ASME (2007), International Design and Engineering Technical Conference And Computers and Information in Engineering Conference. Las Vegas; NV (2007).
  14. MF.Daqaq, GW. Vogl, Frequency island in the primary resonance of nonlinear delay systems. ENOC (2008), Saint Petersburg, Russia; June, 30-July, 4 (2008).
  15. FM. Atay, Van der Pol’s oscillator under delayed feedback. J Sound Vib, 218, (1998) 333–339. [CrossRef]
  16. A. Maccari, Vibration control for the primary resonance of the van der Pol oscillator by a time delay state feedback., Int J Non-Linear Mech, 38, (2003)123–131. [CrossRef]
  17. A. Maccari, Delayed feedback control for a parametrically excited van der Pol oscillator., Physica Scripta, 76, (2007) 526–532. [CrossRef]
  18. AF. EI-Bassiouny, Stability and oscillation of two coupled During equations with time delay state feedback., Physica Scripta, 74, (2006) 726–35. [CrossRef]
  19. SM. Sah, M. Belhaq, Effect of vertical high-frequency parametric excitation on self-excited motion in a delayed van der Pol oscillator. Chaos, Solitons & Fractals, 37, (2008) 1489–1496.
  20. M. Belhaq, SM. Sah Fast parametrically excited van der Pol oscillator with time delay state feed-back., Int J Non-linear Mech, 34, (2008) 124–130. [CrossRef]
  21. M. Belhaq, SM. Sah, Horizontal fast excitation in delayed van der Pol oscillator., Commun Nonlinear Sci Numer Simul, 13, (2008)1706–1713. [CrossRef]
  22. MK. Suchorsky, MS. Sah, RH. Rand, Using delay to quench undesirable vibrations, Nonlinear Dyn, 62, (2010) 407–416. [CrossRef]
  23. KL. Johnson, Contact Mechanics. Cambridge University Press: Cambridge; (1979).
  24. AH. Nayfeh, DT. Mook, Nonlinear Oscillations. Wiley, New York; (1979).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.