Open Access
MATEC Web of Conferences
Volume 1, 2012
CSNDD 2012 – International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 02001
Number of page(s) 4
Section Time-Delayed Feedback Control: Theory and Application
Published online 09 July 2012
  1. Pyragas, K. (1992). Continuous Control of Chaos by Self-Controlling Feedback. Physics Letters A 170(6): 421–428. [Google Scholar]
  2. Hu, H. Y. and Z. H. Wang (2009). Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons & Fractals 40(1): 13–27. [Google Scholar]
  3. Hu, H. Y., H. L. Wang, et al. (2004). Global dynamics of a Duffing oscillator with delayed displacement feedback. International Journal of Bifurcation and Chaos 14(8): 2753–2775 [Google Scholar]
  4. Younis, M. I. and A. H. Nayfeh (2003). A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics 31(1): 91–117. [Google Scholar]
  5. Alsaleem, F. M. and M. I. Younis (2010). Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Materials & Structures 19(3). [Google Scholar]
  6. Nayfeh, A. H., “Introduction to perturbation techniques,” Wiley, 1981, New York. [Google Scholar]
  7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.