Issue |
MATEC Web Conf.
Volume 83, 2016
CSNDD 2016 - International Conference on Structural Nonlinear Dynamics and Diagnosis
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 4 | |
Section | Energy harvesting | |
DOI | https://doi.org/10.1051/matecconf/20168302001 | |
Published online | 16 November 2016 |
Energy harvesting in a delayed and excited Duffing harvester device
1 Laboratory of Renewable Energy and Structural Dynamics, University Hassan II - Casablanca, Morocco
2 University Mohammed I Oujda, FST-Al Hoceima, Morocco
We explore quasi-periodic (QP) vibration-based energy harvesting (EH) in a forced nonlinear oscillator under time delay. The energy harvesting system consists in a delayed Duffing oscillator subject to harmonic excitation coupled to an electric circuit through an electromechanical coupling mechanism.We consider the case of primary resonance for which the frequency of the excitation is near the natural frequency of the oscillator. Application of the double-step perturbation method enables the approximation of the amplitude of the QP vibrations used to extract the average powers from the harvester device. Results shown that for a small value of delay amplitude, the periodic vibration-based EH can be extracted in a narrow range near the resonance, while QP vibration-based EH can be extracted over broad ranges of excitation. For relatively increasing value of the delay amplitude, only QP vibration-based EH can be extracted.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.