Issue |
MATEC Web Conf.
Volume 349, 2021
6th International Conference of Engineering Against Failure (ICEAF-VI 2021)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 9 | |
Section | Metallic Materials: Characterization, Mechanical Behavior and Modeling, Detection of Metal Failures | |
DOI | https://doi.org/10.1051/matecconf/202134902013 | |
Published online | 15 November 2021 |
The influence of exposed to corrosion length of rebars on fatigue life of RC elements
1 Dr. Ing. Civil Engineer, Department of Mechanical Engineering and Aeronautics, University of Patras
2 PhD Candidate. Civil Engineer, Department of Mechanical Engineering and Aeronautics, University of Patras
3 Professor, Dr. Ing. Civil Engineer, Department of Mechanical Engineering and Aeronautics, University of Patras
* Corresponding author: kkoulouris@upnet.gr
Deterioration of reinforced concrete is a main factor on estimation of structures' service lifetime. As it is well known, both corrosion of steel reinforcement and earthquake events, have detrimental effects on structural integrity of RC elements. In this study, the fatigue life of corroded reinforcement is investigated. Bare and embedded (in concrete) specimens of rebars are tested in low cycle fatigue conditions after accelerated corrosion experiments using impressed current technique. Corrosion damage, in terms of mass loss, and the mechanical tests of fatigue are taken account in function of the exposed to corrosion length of reinforcement. The outcomes attained from the experimental study indicate higher mass loss values of specimens with short exposed to corrosion length than the corresponding mass loss values of specimens with long exposed to corrosion length at the same tested corrosion time; subsequently resulting in their reduced fatigue lifetime. Extrapolating the abovementioned results on RC elements in marine environment located in seismic prone areas, issues are raised concerning the assessment of structural integrity and the parameters which are taken into account on monitoring of high importance structures.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.