Issue |
MATEC Web Conf.
Volume 346, 2021
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2021)
|
|
---|---|---|
Article Number | 01035 | |
Number of page(s) | 5 | |
Section | Materials Processing Technologies | |
DOI | https://doi.org/10.1051/matecconf/202134601035 | |
Published online | 26 October 2021 |
Experimental Studies on the Influence of Electrochemical Dimensional Processing on the Surface Fatigue of Rolls in Rolling Machines
Voronezh State Technical University, 14, Moscow Avenue, 394026, Voronezh, Russia
* Corresponding author: alexboldyrev@yandex.ru
The state of surface layer in large part determines the performance characteristics of products, especially those operating at high contact loads, and in particular of rolls in rolling machines. As a rule, grinding is the final processing of rolls, but high specific work and high local heating in the cutting area lead to the appearance of a large variety of defects in the surface layer of the machined part. Subsequent electrochemical dimensional processing can significantly reduce their number. This article presents the results of comparative tests for surface fatigue of samples made of alloy steel 9Cr2MoV. The sequence of samples preparation for experimental studies is considered, they underwent a cycle of heat treatment according to a single standard mode, which made it possible to obtain a martensitic structure in the presence of inclusions of small carbides. Then the samples were ground to the height of irregularities Ra = 0.3-0.2 microns. Some of the ground samples were subjected to electrochemical dimensional processing at rational modes, when 0.2 mm thick metal layer was removed per side in the time equal to 0.5 min. The result was practically flaw-free surface with the microroughness height Ra = 0.25-0.18 microns. The sample tests for surface fatigue were carried out on a two-contact roller machine under rolling conditions with relative slip between the sample surface and pressure rollers at the peripheral speed of sample rotation 1.3 times lower than the circumferential speed of pressure roller rotation. The analysis on the contact stress diagram of the samples showed that higher resistance to fatigue fractures is observed in the samples after electrochemical dimensional processing. The number of cycles at which the limit of material contact endurance occurs for these samples is almost twice as large as for the samples after grinding.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.