Issue |
MATEC Web Conf.
Volume 226, 2018
XIV International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2018)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 5 | |
Section | 1 Fundamentals of mechanics, dynamics and tribology of machines | |
DOI | https://doi.org/10.1051/matecconf/201822601021 | |
Published online | 07 November 2018 |
Achievement of required surface roughnesses in complex profile channels by dynamic combined processing
Voronezh State Technical University, 394026 Voronezh Moscow ave. 14, Russia
* Corresponding author: alexboldyrev@yandex.ru
At present for processing of complex geometrical channels of workpieces electrochemical dimensional processing, vibro-impact machining and vibro-extruding are widely used. However combined electrochemical mechanical processing, that unites anodic dissolution and plastic flow of material in space and time, provides the required characteristics of surface layer. Local action anodic dissolution changes cold work amount and accelerates dissolution of micro- and macro-cusps, this causes annealing of physical and mechanical parameters in processed segments and accross the whole surface profile the required strengthening degree is attained.
The authors examine annealing model for microsurface by grain displacement in channel where extrusion forcing is dictated by grains size and profile of narrow blade channel and also by actual processing conditions. Operating conditions that are recommended for implementation of combined electrochemical mechanical processing of impeller and turbine type workpieces are found by experiments.
In consequence of field research they determined availability of standard microgeometry across the whole surface profile by combined processing with vibrations hashing with up to 2030 Hz frequency and low voltage current (in operation range from 1,2 till 1,8 V). Therein technological cycle decreases up to two fold, this reduces inadmissible jumping of blade edges and dimensional allowance.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.