Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 08002 | |
Number of page(s) | 6 | |
Section | Intermetallics and MMCs | |
DOI | https://doi.org/10.1051/matecconf/202032108002 | |
Published online | 12 October 2020 |
Integrated Computational Materials Engineering of Gamma Titanium Aluminides for Aerospace Applications
1 ARCONIC, 1000 Warren Ave, Niles OH 44446 USA
2 Department of Materials Science & Engineering, Case Western Reserve University, Cleveland OH 44106 USA
* Sesh.Tamirisakandala@Arconic.com
Although the benefits of titanium aluminides for intermediate service temperature applications were well conceived and significant research and development activities were conducted in the past four decades, they remained as developmental materials due to barriers associated with melting, processing, scale-up, and cost. Demanding requirements of efficient aero-engines and extensive risk reduction demonstrations paved the path for commercial introduction of gamma titanium aluminides. The single most attractive current application is for low pressure turbine blades (LPTBs) in advanced aero-engines replacing conventionally cast nickel superalloys. This paper provides an overview of recent progress, producibility challenges, and opportunities. The successful journey of gamma (γ) TiAl LPTB development from laboratory demonstrations to production insertions in mass-produced commercial jet engines will be described. Collaboration and integrated product development were identified as the most critical needs for rapid maturation and implementation of γ-TiAl into aerospace applications. An integrated computational materials engineering modeling framework and toolsets developed under a collaborative US Air Force Metals Affordability Initiative project between industry, government, and academia will be illustrated. Model-based optimization of material and processing for achieving desired performance goals will be highlighted.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.