Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 17003 | |
Number of page(s) | 8 | |
Section | Variable Amplitude Loading | |
DOI | https://doi.org/10.1051/matecconf/201930017003 | |
Published online | 02 December 2019 |
Multiaxial cycle counting method for non-proportional multiaxial variable loading signals based on modified maximal shear stress
Slovak University of Technology, Faculty of Mechanical Engineering, Namestie slobody 17, 812 31 Bratislava, Slovakia
One of the most challenging task in field of multiaxial fatigue is fatigue lifetime estimation of components loaded with multiaxial non-proportional variable amplitude loading. While this task consists of multiple smaller problems, one of the most crucial ones is loading cycles identification (and extraction) for future use with multiaxial damage criterions. By now, several cycle counting methods have been proposed for multiaxial loading conditions. The most wildly accepted methods are Bannantine-Socie’s method and Wang-Brown’s method (which has been later modified by Meggiolaro and Castro). The aim of this paper is the comparison of newly developed method with Bannantine-Socie’s method and Wang-Brown’s method. The new cycle counting method is based on cycle identification in relative maximum shear stress histories (calculated from multiaxial loading histories). The extracted data than composes part of each loading channel of multiaxial loading histories corresponding to identified loading cycle. The comparison of chosen methods has been done by using data sets created by authors as well as using real measured data from real operation.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.