Issue |
MATEC Web Conf.
Volume 300, 2019
ICMFF12 - 12th International Conference on Multiaxial Fatigue and Fracture
|
|
---|---|---|
Article Number | 12003 | |
Number of page(s) | 9 | |
Section | Non-Proportional Loading | |
DOI | https://doi.org/10.1051/matecconf/201930012003 | |
Published online | 02 December 2019 |
Taking into account the non-proportional loading effect on high cycle fatigue life predictions obtained by invariant-based approaches
ENSTA Bretagne, UMR CNRS 6027, IRDL, F-29200, Brest, France
Industrial structures are often subjected to multiaxial fatigue loadings. If the multiple stress signals are not synced the loading is said to be non-proportional. Most of the multiaxial fatigue criteria give highly inaccurate lifetime predictions when used in the case of such loadings. The scalar equivalent stress defined by the criteria does not take into account the non-proportional nature of the multiaxial loading and leads to non-conservative predictions. Moreover a multiaxial fatigue criterion can only be applied on a stress cycle which has no clear definition when multiple unsynced signals are to be considered. This study addresses these issues by proposing a correction of an invariant based multiaxial fatigue criterion through the definition of a non-proportional degree indicator. A definition of multiaxial cycle is also given based on the Wang-Brown method. Finally a complete chain of invariant based lifetime prediction for non-proportional multiaxial fatigue is validated.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.