Issue |
MATEC Web Conf.
Volume 298, 2019
International Conference on Modern Trends in Manufacturing Technologies and Equipment: Mechanical Engineering and Materials Science (ICMTMTE 2019)
|
|
---|---|---|
Article Number | 00051 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/201929800051 | |
Published online | 18 November 2019 |
Alterations in the microhardness of a titanium alloy affected to a series of nanosecond laser pulses
1
National University of Science and Technology «MISIS», Leninsky avenue, 4, Moscow, 119049, Russian Federation
2
Moscow Aviation Institute (National Research University), Volokolamskoe highway, 4, Moscow, 125993, Russian Federation
* Corresponding author: ushakoviv@mail.ru
The alterations in the microhardness of a titanium alloy Ti85.85Al6.5Zr4Sn2Nb1Mo0.5Si0.15 subjected to laser treatment were investigated. Laser processing consists of a series of pulses with durations 20 ns. We used various methods of laser processing, which differed in power density, wavelength, geometrical pattern of irradiation and so on. The dependences of the microhardness on the load on the indenter were found. The laser processing modes providing the increased microhardness are determined. The investigations were carried out at loads from 0.49 N to 4.9 N, with maximum indentation depth of the Vickers pyramid up to 12 μm. Vickers microhardness can be increased by 20 – 40 %. At the same time, the plastic properties of the hardened layer are improved. The probability of crack formation during indentation of the initial alloy increased with a load on the indenter and reached 0.52 for a load of 4.9 N. In two of the treated areas of the three presented, crack formation was not recorded at any load. The mechanisms of hardening of the material surface layer under the influence of a laser pulse are discussed. Using the methods of computational mathematics, the character of sample heating under the influence of a single laser pulse is determined. The perspectives for the development of the proposed processing method are permitting to obtain the optimal mechanical properties of the hardened layer are discussed.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.