Issue |
MATEC Web Conf.
Volume 269, 2019
IIW 2018 - International Conference on Advanced Welding and Smart Fabrication Technologies
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 6 | |
Section | Marine and Offshore | |
DOI | https://doi.org/10.1051/matecconf/201926906003 | |
Published online | 22 February 2019 |
Impact Toughness of Gas Metal Arc Welded HY-80 Steel Plate at Sub-zero Temperatures
Department of Metallurgy and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia
Corresponding author: winarto@metal.ui.ac.id
Various welding methods are widely applied in large fabrication of high strength steel. However, commonly the problem occurs where a coarse grain is formed near fusion zone causing reduce the impact toughness due to the weld joint become brittle. Ductility and toughness in a coarse grain heat affected zone (CGHAZ) is low due to the formation of coarsening grain size. The objective of this research is to investigate the microstructure evolution, impact toughness and fracture appearance at sub-zero temperatures of the high strength steel arc welded. The steel that used in this experiment is a HY-80 steel welded by gas metal arc welding (GMAW) with a mixture of argon and carbon dioxide (90%Ar and 10%CO2) and ER100S solid wire. Microstructure observation and Charpy V-notch (CVN) tests were performed on the weld joint which consist of base metal (BM), heat affected zone (HAZ), and weld metal (WM). The CVN tests on the HY-80 steel plate at various temperatures (20, -20, -60 and -80 °C) show impact toughness decrease when the test temperature decrease. The CVN tests on the HY-80 weld joint at a temperature of 80 °C show the lowest impact toughness was measured at WM (61 J) and followed fusion line-FL (101 J) with brittle fracture appearance.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.