Issue |
MATEC Web Conf.
Volume 226, 2018
XIV International Scientific-Technical Conference “Dynamic of Technical Systems” (DTS-2018)
|
|
---|---|---|
Article Number | 02022 | |
Number of page(s) | 8 | |
Section | 2 Non-linear dynamics and applied synergetics in technical systems | |
DOI | https://doi.org/10.1051/matecconf/201822602022 | |
Published online | 07 November 2018 |
Formalization of dynamic model of pneumatic drive with variable structure
Don state technical university, 344000 Rostov-on-Don, Russia
* Corresponding author: elena21@spark-mail.ru
The work is devoted to solving the actual technical problem of increasing the speed and accuracy of pneumatic servo drives. Pneumatic drives have a large number of advantages (high speed of the output link, environmental friendliness, low cost, etc.). But having a high compressibility of compressed air limits the possibility of realizing optimal trajectories of motion of control objects. The complexity in the organization of controlling the follow-up pneumatic drive is also introduced by a mathematical apparatus that takes into account the thermodynamic processes during the filling and emptying of the working cavities of a pneumatic cylinder. In connection with this, the goal of this work was the development of a mathematical model of a servomotor with a variable structure that takes into account the various structures of pneumatic valves with proportional control. The proposed mathematical model will make it possible to use the synergetic approach in controlling the pneumatic drive. This makes it possible to take into account not less important drive parameters such as energy efficiency, etc., with increasing speed and accuracy of the drive.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.