Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 7 | |
Section | ND: Nonlinear Dynamics, Chaos and Control of Elastic Structures; TP6: Condition monitoring, tip-timing, experimental techniques | |
DOI | https://doi.org/10.1051/matecconf/201821103005 | |
Published online | 10 October 2018 |
Visualization research on the influence of an ultrasonic degassing system on the operation of a hydraulic gear pump
1
Wrocław University of Science and Technology, Faculty of Mechanical Engineering,
Poland
2
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Ukraine
1 Corresponding author: piotr.antoniak@pwr.edu.pl
Gear pumps make a group of the most popular hydraulic energy generators. Research and development works concerning those units have been going on for decades, and thanks to them gear pumps feature very good operating parameters. However, even well-designed gear pumps will not work properly if the physical properties of the working fluid are incorrect. One of such properties is compressibility of the fluid, which largely depends on the amount of gas dissolved in the medium. For this reason, the aim is to reduce the amount of gas dissolved in the working medium. It can be done using both chemical and physical methods. Because chemical methods can affect the chemical composition of the working fluid, it is the physical methods that are usually used in hydraulic systems.
This paper presents preliminary visualization research into the influence of an ultrasonic degassing system on the operation of a hydraulic gear pump. Apart from that, operation of such a system and its theoretical impact on the work of the gear pump is discussed Experimental study, using a high-speed camera, was carried out in order to verify the theoretical description.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.