Issue |
MATEC Web Conf.
Volume 287, 2019
6th International BAPT Conference “Power Transmissions 2019”
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 7 | |
Section | Design, Analysis, Simulation and Optimization | |
DOI | https://doi.org/10.1051/matecconf/201928701007 | |
Published online | 14 August 2019 |
Gear mesh geometry effect on performance improvement for external gear pumps
1
Odessa National Polytechnic University, Ukraine
2
University of Chemical Technology and Metallurgy - Sofia, Bulgaria
3
South Ukrainian National Pedagogical University named after K. D. Ushynsky, Ukraine
* Corresponding author: ivv@opu.ua
The parameters of the involute and cycloidal gearing which influence on fluid volume at the tooth space are analysed. It is established that to a greater extent on the flow rate of the pump with involute gearing is influenced by the radial clearance coefficient and the profile shift coefficient. The radii ratio of the auxiliary and pitch circles, as well as the radial clearance coefficient, mainly affect the flow rate of the pump with cycloidal gearing. Since the gear module is determined for reasons of pump flow rate, the teeth has a significant safety factor for contact stress and especially bending stress. This allows a wide variation of the gearing parameters in greater limits than in transmissions. The dependences of the fluid volume at the tooth space in the cycloidal gearing on the radial clearance coefficient, on the radii ratio of the auxiliary and pitch circles, on the fillet radius coefficient, is found. The boundaries of the variation of the gearing parameters were established taking into account the bending strength of the teeth. The analysis is carried out using the finite element method. Recommendations for the use of cycloidal gearing in external gear pumps have been developed.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.