Issue |
MATEC Web Conf.
Volume 204, 2018
International Mechanical and Industrial Engineering Conference 2018 (IMIEC 2018)
|
|
---|---|---|
Article Number | 07015 | |
Number of page(s) | 6 | |
Section | Construction | |
DOI | https://doi.org/10.1051/matecconf/201820407015 | |
Published online | 21 September 2018 |
Simulation of knee implants made of Ti6Al4V material during walking
Department of Mechanical Engineering, Faculty of Engineering Universitas Negeri Malang, 65145 Malang, Indonesia
*
Corresponding author: djoko.kustono.ft@um.ac.id
Bone is the connective tissue in the human body which consists of cells, fibers, and extracellular matrix. The bone matrix is the hardest part located in the outer layer of the bone, which is caused by the deposition of minerals in the matrix, so that the bone undergoes classification. The bone functions as a hard, rigid body frame, and provides a place or space for attachment of muscles and organs found in the human body. The simulation results using FEM showed that knee implants made with Ti6Al4V material had a total deformation of 0.15 mm, maximum principal stress of 17.012 MPa, and a maximum shear stress of 15.841 MPa. The analysis was performed using a variation of time 0 to 1.01 seconds.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.