Issue |
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
|
|
---|---|---|
Article Number | 15001 | |
Number of page(s) | 10 | |
Section | Micro cold forming, Special session SFB 747 | |
DOI | https://doi.org/10.1051/matecconf/201819015001 | |
Published online | 18 September 2018 |
Tensile properties and drawability of thin bimetallic aluminum-scandium-zirconium / stainless steel foils and monometallic Al-Sc-Zr fabricated by magnetron sputtering
1
Leibniz Institute for Materials Engineering IWT, Bremen, Germany
2
Bremer Institut für angewandte Strahltechnik (BIAS), Bremen, Germany
3
University of Bremen, Faculty of Production Engineering, Bremen, Germany
*
Corresponding author: kovac@iwt-bremen.de
Al-Sc-Zr alloys are interesting for the production of high strength micro components by micro deep drawing. These alloys show a good hardenability due to the formation of nanometer-scale spheroidal Al3(Sc, Zr) precipitates, which are highly coherent with the aluminum matrix. However, the formation of these precipitates in Al-Sc-Zr foils fabricated by conventional metallurgical methods dramatically reduces their ductility and drawability. In this work, magnetron sputtering was used to produce Al-Sc-Zr foils and Al-Sc-Zr / stainless steel bimetallic foils which are nearly free of these precipitates. Tensile tests were carried out to measure and compare the mechanical properties of monometallic Al-Sc-Zr foils and bimetallic Al-Sc-Zr / stainless steel foils deposited with varying plasma target powers and containing different volume fractions (layer thickness) of Al-Sc-Zr. Micro deep drawing was used to determine the drawability of selected monometallic and bimetallic foils. The results show that the density of monometallic Al-Sc-Zr foils can be improved significantly by increasing the DC target power and by using the high power impulse magnetron sputtering (HiPIMS) technology, resulting in foils with higher ductility. Bimetallic foils achieved higher strength and ductility than monometallic Al-Sc-Zr foils. Their mechanical properties vary with the target power and the volume fraction (thickness) of Al-Sc-Zr. The limit drawing ratio of HiPIMS deposited monometallic foil was 1.7 or 1.8 depending on the side of the foil facing the die, whereas a limit drawing ratio of 1.9 was observed for bimetallic foils.
Key words: Micro forming / Sheet metal / PVD-coating
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.