Issue |
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 11 | |
Section | Advanced industrial, automotive and green energy applications | |
DOI | https://doi.org/10.1051/matecconf/201815704003 | |
Published online | 14 March 2018 |
Design of stirling engine operating at low temperature difference
1
Department of Machining Technology, Institute of Manufacturing Technology, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 616 69, Czech Republic
2
Faculty of Mechanical Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
* Corresponding author: andrej.czan@fstroj.uniza.sk
There are many sources of free energy available in the form of heat that is often simply wasted. The aim of this paper is to design and build a low temperature differential Stirling engine that would be powered exclusively from heat sources such as waste hot water or focused solar rays. A prototype is limited to a low temperature differential modification because of a choice of ABSplus plastic as a construction material for its key parts. The paper is divided into two parts. The first part covers a brief history of Stirling engine and its applications nowadays. Moreover, it describes basic principles of its operation that are supplemented by thermodynamic relations. Furthermore, an analysis of applied Fused Deposition Modelling has been done since the parts with more complex geometry had been manufactured using this additive technology. The second (experimental) part covers 4 essential steps of a rapid prototyping method - Computer Aided Design of the 3D model of Stirling engine using parametric modeller Autodesk Inventor, production of its components using 3D printer uPrint, assembly and final testing. Special attention was devoted to last two steps of the process since the surfaces of the printed parts were sandpapered and sprayed. Parts, where an ABS plus plastic would have impeded the correct function, had been manufactured from aluminium and brass by cutting operations. Remaining parts had been bought in a hardware store as it would be uneconomical and unreasonable to manufacture them. Last two chapters of the paper describe final testing, mention the problems that appeared during its production and propose new approaches that could be used in the future to improve the project.
Key words: Stirling engine / Stirling thermodynamic cycle / additive method / rapid prototyping / fused deposition modelling / 3D print
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.