Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 01026 | |
Number of page(s) | 8 | |
Section | Main Session: Water System Operations | |
DOI | https://doi.org/10.1051/matecconf/201824601026 | |
Published online | 07 December 2018 |
Research on Short-term Multi-objective Optimization Scheduling oriented Peak Regulation of Power Network
1 Shcool of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
2 Changjiang River Scientific Research Institute, Wuhan, Hubei 430015, China
a Corresponding author: wangyongqiang1022@126.com
With the succession of river basins and inter-basin hydropower stations, the joint optimal operation of cascade hydropower stations in the river basin has large-scale, nonlinear, strong coupling, and multi-target characteristics, and must consider the effects of hydrometeorology, water demand, and power grid security. Focusing on the preparation of short-term power generation plans for cascade hydropower stations on the Qingjiang River, a comprehensive multi-objetive power generation planning model with the largest total power generation and the least load variance on the power grid is established. Based on the constraint processing method of multi-objective optimization scheduling in long-term, the optimal flow distribution technology is adopted to improve the accuracy of power generation planning. The above model is solved by using SMPSO. The results show that the improved algorithm can effectively overcome the shortcomings of slow convergence speed and easy convergence to local optimum. It can improve the power generation efficiency of the whole cascade while responding to the peaking demand of the power grid and provide a new solution to the short-term power generation planning ideas.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.