Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 5 | |
Section | Main Session: Water System Operations | |
DOI | https://doi.org/10.1051/matecconf/201824601027 | |
Published online | 07 December 2018 |
Quantifying the impact of release operations and weather conditions on the flow and temperature dynamics in the cascade-reservoir system
1 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
2 Hydrology Bureau of Haihe River Water Conservancy Commission, Ministry of Water Resources, Tianjin, 300170, China
3 Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
a Corresponding author: gangchen@hhu.edu.cn
The objective of this study was to investigate the flow dynamics and temperature characteristics under different reservoir operation scenarios and weather conditions in the river-reservoir system, which can be used to set scientific guidelines for river management and conservation planning strategies. The calibrated three-dimensional model provided simulated unsteady water surface elevation, temperature, velocity and discharge at different layers (depths) in different locations. A series of operation scenarios were modeled to understand and quantify formation, propagation, and disappearance of density currents that are resulted from combinations of daily repeated large release (DRLR) of different durations and solar heating. DRLRs (140 m3/s) with longer durations pushed the bottom cold water further downstream and maintained the bottom water temperature cooler. Variations of weather conditions (e.g., drops of air temperature and solar radiation) directly controled variations of bottom-layer water temperature. The daily drop rate of bottom temperature was related to the rate and duration of air temperature drop. Under the practice for the water turbines running at downstream, it clearly showed the shocking withdrawal and stopping effect from the downstream operation. The velocity for the whole cross-section were almost increased with same magnitude of about 0.1 m/s at GOUS and JML.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.