Issue |
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 5 | |
Section | Mechanical Design-Manufacture and Automation | |
DOI | https://doi.org/10.1051/matecconf/20179507006 | |
Published online | 09 February 2017 |
Differential Quadrature Method Based Study of Vibrational Behaviour of Inclined Edge Cracked Beams
Department of Mechanical Engineering, IIT Madras, India
The study of vibration behaviour of cracked system is an important area of research. In the present work we present a mathematical model to study the effect of inclination, location and size of the crack on the vibrational behavior of beam with different boundary conditions. The model is based on the assumption that the equivalent flexible rigidity of the cracked beam can be written in terms of the flexible rigidity of the uncracked beam, based on the energy approach as proposed by earlier researchers. In the present work the Differential Quadrature Method (DQM) is used to solve equation of motion derived by using Euler’s beam theory. The primary interest of the paper is to study the effect of inclined crack on natural frequency. We have also studied the beam vibration with and without vertical edge crack as a special case to validate the model. The DQM results for the natural frequencies of cracked beams agree well with other literature values and ANSYS solutions.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.