Issue |
MATEC Web of Conferences
Volume 26, 2015
2015 3rd Asia Conference on Mechanical and Materials Engineering (ACMME 2015)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 4 | |
Section | Mechatronics and Robotics | |
DOI | https://doi.org/10.1051/matecconf/20152604003 | |
Published online | 12 October 2015 |
Development of Algorithms for Approaching and Docking Underwater Vehicle with Underwater Station
Russian Fedearation, Taganrog, Nekrasovskiy, 44, GSP-17A
a boris.gurenko@gmail.com
b beresneval@sfedu.ru
Underwater vehicles (UV) are widely spread nowadays. Their efficient application requires accompanying base ships or net of stations for technical servicing. Fast and energy-efficient docking is one of the key requirements for trouble-free operation. In this paper authors describe the research and development of algorithms for UV control system that allows docking with underwater station. The process is divided in two steps: moving to docking zone and vehicle positioning of station. First task includes development of path regulator. The proposed one features separation of control channels for simple adjustment and gives best results when multicoupling influence is low. Second task was solved on the basis of UV mathematical model. Developed control values were tested in simulation and proved themselves to be efficient. Authors give results of coordinate changes, control force modifications and deviation of velocity and orientation angles from the required values.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.